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APOLLONIUS OF PERGA 
 

CONICS. BOOKS ONE - SEVEN 
 

English translation by Boris Rosenfeld 
The Pennsylvania State University 

 
 Apollonius of Perga (ca 250 B.C. - ca 170 B.C.) was one of the greatest 
mathematicians of antiquity. 
 During 1990 - 2002 first English translations of Apollonius’ main work 
Conics were published. These translations [Ap5](Books 1-3), [Ap6](Book 4), 
[Ap7] (Books5-7) are very different. The best of these editions is [Ap6]. 

The editions [Ap4] and [Ap5] are very careless and often are far from the 
Greek original. The editors of [Ap5] have corrected many defects of [Ap4], but 
not all; they did not compare this text with the Greek original. Some defects 
remain also in the edition [Ap6]. 
The translation [Ap7], being the first rate work, is not a translation of Greek 
text because this text is lost, and is the translation of Arabic exposition by 
Thabit ibn Qurra (826 - 901). 
 Therefore we present the new English translation of this classic work writ-
ten in one style more near to Greek text by Apollonius, in our translation some 
expressions of the translations [Ap5], [Ap6], and [Ap7] are used. 
 The authors of the translations [Ap5], [Ap6], and [Ap7] are linguists and 
in their translations many discoveries of Apollonius in affine, projective, confor-
mal, and differential geometries in Apollonius’ Conics being special cases of gen-
eral theorems proved in Western Europe only in 17th -19th centuries were not 
mentioned. 
 The commentary to our translation from the standpoint of modern 
mathematics uses books [Ro1] and [Ro2] by the translator. 

I am very grateful to my master student, now Ph.D. and the author of the 
thesis[Rho1] and [Rho2] Diana L. Raodes, possessing ancient Greek. This work 
could not be completed without the help of translator’s daughter, Professor of 
the Pennsylvania State University, Svetlana R. Katok, and also Ph.D. Daniel Genin 
and  Nicholas Ahlbin. 

Diagrams to Books I-IV should be taken from editions [AP3] Heiberg or 
[AP12] of Stamatis, diagrams to Books V-VII should be taken from the edition 
[AP7] of Toomer. 
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BOOK ONE 
 

Preface 
Apollonius greets Eudemus1 

 
 If you are restored in body, and other things go with you to your mind,  
well; and we too fare  pretty well. At the time I was with you in Pergamum, I ob-
served you were quite eager to be kept informed of the work I was doing in con-
ics. And so I am sending you this first book revised. I will send you other books 
when I will be satisfied with them. For I  don’t believe you have forgotten hear-
ing from me how I worked out the plan for these conics at the request of Nauc-
rates2, the geometer, at the time he was with me in Alexandria lecturing, and 
how on arranging them in eight books I immediately communicated them in 
great haste because of his near departure, not revising them but putting down 
whatever came to me with the intention of a final going over. And so finding 
now the occasion of correcting them, one book after another, I  will publish 
them. And since it happened that some others among those frequenting me got 
acquainted with the first and second books before the revision, don’t be sur-
prised if you come upon them in a different for. 
 Of the eight books the first four belong to a course in the elements 3.  
 The   first book contains the generation of the three sections and of the 
opposite [sections]4, and the principal properties in them worked out more fully 
and universally than in the writings of others. 
  The second book contains the properties having to do with the diameters 
and axes and also the asymptotes, and other things of a general and necessary 
use for limits of possibility. And what I call diameters and what I call axes you 
will know from this book. 
 The third book contains many unexpected theorems of use for the con-
struction of solid loci and for limits of possibility of which the greatest part and 
the most beautiful are new. And when I had grasped these, I knew that the 
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three-line and four-line locus5 had not been constructed by Euclid, but only a 
chance part of it and that not very happily. For it was not possible for this con-
struction to be completed without the additional things found by me.  
 The fourth book shows in how many ways the sections of cone intersect 
with each other and with the circumference of a circle, and contains other 
things in addition none of which has been written up by my predecessors, that 
is in how many points the section of a cone or the circumference of a circle and 
the opposite sections meet the opposite sections. 
  The last four books are fuller in treatment. For there is one [the fifth 
book] dealing more fully with maxima and minima, and one [the sixth book] with 
equal and similar sections of a cone, and one [the seventh book] with limiting 
theorems, and one [the eighth book] with determinate problems.  
 And so indeed, with all of them published, those happening upon them 
can judge them as they see fit. 
 Let the happiness will be to you. 
 

First definitions 
 

 1. If a point is joined by a straight line with a point in the circumference of 
a circle which is not in the same plane with the point, and the line is continued in 
both directions, and if, with the point remaining fixed, the straight line being ro-
tated about the circumference of the circle returns to the same place from 
which it began, then the generated surface composed of the two surfaces lying 
vertically opposite one another, each of which increases indefinitely as the gen-
erating straight line is continued indefinitely, I call a conic surface 6, and I call 
the fixed point the vertex, and the straight line drawn from the vertex to the 
center of the circle  I call  the axis.  
 2. And the figure contained by the circle and by the conic surface be-
tween the vertex and the circumference of the circle I call a cone7, and the 
point which is also the vertex of the surface I call the vertex of the cone, and 
the straight line drawn from the vertex to the center of the circle I call the axis, 
and the circle I call the base of the cone. 
 3. I call right cones those having axes perpendicular to their bases, and I 
call oblique those not having axes perpendicular to their bases. 
 4. For any curved line that is in one plane, I call straight line drawn from 
the curved line that bisects all straight lines drawn to this curved line parallel to 
some straight line the diameter 8,9. And I call the end of the diameter situated 
on the curved line the vertex of the curved line, and I call   these parallels the 
ordinates drawn to the diameter 10 . 
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 5. Likewise, for any two curved lines lying in one plane, I call the straight 
line which cuts the two curved lines and bisects all straight lines drawn to either 
of the curved lines parallel to some straight line the transverse diameter. And I 
call the ends of the [transverse] diameter situated on the curved lines the ver-
tices of the curved lines. And I call the straight line lying between the two 
curved lines, bisecting all straight lines intercepted between the curved lines 
and drawn parallel to some straight lines the upright diameter 11. And I call the 
parallels the ordinates drawn to the [transverse or upright] diameter. 
 6. The two straight lines, each of which, being a diameter, bisecting the 
straight lines parallel to the other, I call the conjugate diameters12 of a curved 
line and of two curved lines.  
 7. And I call that straight line which is a diameter of the curved line or 
lines cutting the parallel straight lines at right angles the axis of curved line and 
of two curved lines 13,14.      
 8. And I call those straight lines which are conjugate diameters cutting 
the straight lines parallel to each other at right angles the conjugate axes of a 
curved line and of two curved lines. 
 

[Proposition] 1 
 
 The straight lines drawn from the vertex of the conic surface to points on 
the surface are on that surface 15. 
 Let there be a conic surface whose vertex is the point Α, and let there be 
taken some point Β on the conic surface, and let a straight line ΑΓΒ be joined. 
 I say that the straight line ΑΓΒ is on the conic surface. 
 [Proof]. For if possible, let it not be [and the straight line ΑΒ is not on the 
conic surface], and let the straight line ΔΕ be the line generating the surface, 
and ΕΖ be the circle along which ΕΔ is moved. Then if, the point Α remaining 
fixed, the straight line ΔΕ is moved along the circumference of the circle ΕΖ. 
This straight line [according Definition 1] will also go through the point Β, and 
two straight lines will have the same ends. And this is impossible.  Therefore, 
the straight line joined from Α to Β cannot not be on the surface.  Therefore, it 
is on the surface. 
 

Porism 
 

 It is also evident that, if a straight line is joined from the vertex to some 
point among those within the surface, it will fall within the conic surface. And if 
it is joined to some point among those without, it will be outside the surface. 
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[Proposition] 2 

  
 If on either one of the two vertically opposite surfaces two points are 
taken, and the straight line joining the points, when continued, does not pass 
through the vertex, then it will fall within the surface, and continued it will fall 
outside 16. 
 Let there be a conic surface whose vertex is the point Α, and a circle ΒΓ 
along whose circumference the generating straight line is moved, and let two 
points Δ and Ε be taken on either one of the two vertically opposite surfaces, 
and let the joining straight line ΔΕ, when continued not pass through the point 
Α. 
 I say that ΔΕ will be within the surface, and continued will be without. 
 [Proof]. Let ΑΕ and ΑΔ be joined and continued. Then [according to  
PropositionI.1] they will fall on the circumference of the circle. Let them fall to Β 
and Γ, and let ΒΓ be joined. Therefore the ΒΓ will be within the circle, and so too 
within the conic surface. Then let Ζ be taken at random on ΔΕ, and let ΑΖ be 
joined and continued. Then it will fall on ΒΓ, for the triangle ΒΓΑ is in one plane 
[according to Proposition XI.2 of Euclid]. Let it fall to Η. Since then H is within 
the conic surface, therefore [according to the porism to Proposition I.1] the 
straight line ΑΗ is also within the conic surface, and so too the point Ζ is within 
the conic surface. Then likewise it will be shown that all the points on the 
straight line ΔΕ are within the surface. Therefore the straight line ΔΕ is within 
the conic surface. 
 Then let ΔΕ be continued to Θ. I say that it will fall outside the conic sur-
face. For it possible, let there be some point Θ of it not outside the conic sur-
face, and let ΑΘ be joined and continued. Then it will fall either on the circum-
ference of the circle or within [according to Proposition I.1 and its porism]. And 
this is impossible, for it falls on ΒΓ continued; as for example to the point Κ. 
Therefore the straight line ΕΘ is outside the surface. 
 Therefore the straight line ΔΕ is within the conic surface, and continued is 
outside. 
 

[Proposition] 3 
 
         If a cone is cut by a plane through the vertex, the section is a triangle 17. 
  Let there be a cone whose vertex is the point Α and whose base is the 
circle ΒΓ, and let it be cut by some plane through the point Α, and let it make, 
as section, lines ΑΒ and ΑΓ on the surface, and the straight line ΒΓ in the base. 
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 I say that ΑΒΓ is a triangle. 
 [Proof]. For since the line joined from Α to Β is the common section of 
the cutting plane and of the surface of the cone, therefore ΑΒ is a straight line. 
And likewise also ΑΓ. And ΒΓ is also a straight line. Therefore ΑΒΓ is a triangle. If 
then a cone is cut by some plane through the vertex, the section is a triangle. 
 

[Proposition] 4 
 
 If either one of the vertically opposite surfaces is cut by some plane paral-
lel to the circle along which the straight line generating the surface is moved, 
the plane cut off within the surface will be a circle having its center on the axis, 
and the figure contained by the circle and the conic surface intercepted by the 
cutting plane on the side of the vertex will be a cone 18. 
  Let there be a conic surface whose vertex is the point Α and whose circle 
along which the straight line generating the surface is moved is ΒΓ, and let it be 
cut by some plane parallel to the circle ΒΓ, and let it make on the surface as a 
section the line ΔΕ. 
 I say that the line ΔΕ is a circle having the center on the axis. 
 [Proof]. For let Ζ be taken as the center of the circle ΒΓ, and let ΑΖ be 
joined. Therefore [according to Definition 1] ΑΖ is the axis and meets the cut-
ting plane. Let it meet it at Η, and let some plane be drawn through ΑΖ. Then 
[according to Proposition I.3] the section will be the triangle ΑΒΓ. And since the 
points Δ, Η, Ε are points in the cutting plane, and are also in the plane of the tri-
angle ΑΒΓ, [according to Proposition XI.3 of Euclid] ΔΗΕ is a straight line. 
 Then let some point Θ be taken on the line ΔΕ, let ΑΘ be joined and con-
tinued. Then [according to Proposition I.1] it falls on the circumference ΒΓ. Let 
it meet it at Κ, and let ΗΘ and ΖΚ be joined. And since two parallel planes, ΔΕ 
and ΒΓ, are cut by a plane ΑΒΓ, [according to Proposition XI.16 of Euclid] their 
common sections are parallel. Therefore ΔΕ is parallel to ΒΓ. Then for the same 
reason ΗΘ is also parallel to ΚΖ. Therefore [according to Proposition VI.4 of 
Euclid] as ΖΑ is to ΑΗ, so ΖΒ is to ΔΗ, and ΖΓ is to ΗΕ, and ΖΚ is to ΗΘ. 
 Since ΒΖ is equal to ΚΖ and to ΖΓ [according to Proposition V.9 of Euclid] 
ΔΗ is equal to ΗΘ and to ΗΕ. 
 Then likewise we could show also that all the straight lines falling from the 
point Η on the line ΔΕ are equal to each other. 
 Therefore the line ΔΕ is a circle having its center on the axis. 
 And it is evident that the figure contained by the circle ΔΕ and the conic 
surface cut off by it on the side of the point Α is a cone. 
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 And it is there with proved that the common section of the cutting plane 
and of the axial triangle [that is triangle through the axis] is a diameter of the 
circle.                                   
 

[Proposition] 5 
 
 If an oblique cone is cut by a plane through the axis at right angles to the 
base, and is also cut by another plane on the one hand at right angles to the ax-
ial triangle, and on the other hand cutting off on the side of the vertex a trian-
gle similar to the axial triangle and situated antiparallel, then the section is a cir-
cle, and let such a section be called antiparallel 19.  
  Let there be an oblique cone whose vertex is the point Α and whose base 
is the circle ΒΓ, and let it be cut through the axis by a plane perpendicular to the 
circle ΒΓ, and let it make as a section the triangle ΑΒΓ. Then let it also be cut 
by another plane perpendicular to the triangle ΑΒΓ and cutting off on the side 
of Α the triangle ΑΚΗ similar to the triangle ΑΒΓ and situated antiparallel, that is 
so that the angle ΑΚΗ is equal to the angle ΑΒΓ.  And let it make as a section 
on the surface [of the cone] the line ΗΘΚ. 
 I say that the line ΗΘΚ is a circle. 
 [Proof]. For let any points Θ and Λ be taken on the lines ΗΘΚ and ΒΓ, and 
from Θ and ΛΛ let perpendiculars be dropped to the plane of the triangle 
ΑΒΓ. Then [according to Definition XI.4 of Euclid] they will fall to the common 
sections of the planes. Let them fall for example as ΖΘ and ΛΜ.  
Therefore [according to Proposition XI.6 of Euclid] ΖΘ is parallel to ΛΜ. 
 Then ΔΖΕ be drawn through Ζ parallel to ΒΓ, and ΖΘ is parallel to ΛΜ. 
Therefore [according to Proposition XI.15 of Euclid] the plane through ΖΘ and 
ΔΕ is parallel to the base of the cone. Therefore [according to Proposition I.4] it 
is a circle whose diameter is ΔΕ. Therefore [according to Proposition II.14 of 
Euclid] 20 pl.  ΔΖΕ is equal to sq. ΖΘ. 
 And since ΕΔ is parallel to ΒΓ, the angle ΑΔΕ is equal to the angle ΑΒΓ. 
And the angle ΑΚΗ is supposed equal to the angle ΑΒΓ. Therefore the angle 
ΑΚΗ is equal to the angle ΑΔΕ. And the vertical angles at Ζ are also equal. 
Therefore the triangle ΔΖΗ is similar to the triangle ΚΖΕ, and therefore [accord-
ing to Proposition VI.4 of Euclid] as ΕΖ is to ΖΚ, so ΗΖ is to ΖΔ. 
Therefore [according to Proposition VI.16 of Euclid] pl. ΕΖΔ is equal to pl.ΚΖΗ. 
 But it has been shown that sq.ΖΘ is equal to pl.ΕΖΔ. 
 Therefore pl.ΚΖΗ is equal to sq.ΖΘ. 
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 Likewise then all the perpendiculars drawn from the line ΗΘΚ to ΗΚ could 
also be shown to be equal in square to the rectangular plane, in each case under 
the segments of ΗΚ. 
       Therefore the section is a circle21 whose diameter is ΗΚ. 
 

[Proposition] 6 
 
 If a cone is cut by a plane through the axis, and if on the surface of the 
cone some point is taken which is not on a side of the axial triangle, and if from 
this point is drawn a straight line parallel to some straight line which is a per-
pendicular from the circumference of the circle to the base of the triangle, then 
that drawn straight line meets the axial triangle, and on being continued to the 
other side of the surface the drawn straight line will be bisected by the trian-
gle22.  
  Let there be a cone whose vertex is the point Α and whose base is the 
circle ΒΓ, and let the cone be cut by a plane through the axis, and let it make as 
a common section the triangle ΑΒΓ, and from some point Μ on the circumfer-
ence let ΜΝ be drawn perpendicular to [the straight line] ΕΒΓ. Then let some 
point Δ be taken on the surface of the cone, and through Δ let ΔΕ be drawn par-
allel to ΜΝ. 
 I say that the continued ΔΕ will meet the plane of the triangle ΑΒΓ, and if 
further continued toward the other side of the cone until it meet its surface, will 
be bisected by the triangle ΑΒΓ.    
         [Proof]. Let ΑΔ be joined and continued. Therefore it will meet the cir-
cumference of the circle ΒΓ. Let it meet it at Κ and from Κ let ΚΘΛ be drawn 
perpendicular to ΒΓ.Therefore ΚΘ is parallel to ΜΝ, and therefore [according to 
Proposition XI.9 of Euclid] also to ΔΕ. Let ΑΘ be joined. Since then in the triangle 
ΑΘΚ [the straight line] ΔΕ is parallel to ΘΚ, therefore ΔΕ continued will meet ΑΘ. 
But ΑΘ is in the plane of the triangle ΑΒΓ; therefore ΔΕ will meet this plane. 
 For the same reasons it also meets ΑΘ, let it meet it at Ζ, and let ΔΖ be 
continued in a straight line until it meet the surface of the cone. Let it meet it 
at Η. I say that ΔΖ is equal to ΖΗ. 
 For since Α, Η, Λ are points on the surface of the cone, but also in the 
plane drawn through ΑΘ, ΑΚ, ΔΗ, ΚΛ, which is a triangle through the vertex of 
the cone, therefore Α, Η, Λ are points of the common section of the cone’s sur-
face and of the triangle. Therefore the line through Α, Η, and Λ is a straight line. 
Since then in the triangle ΑΛΚ [the straight line] ΔΗ has been drawn parallel in 
the base ΚΘΛ, and some straight line ΑΖΘ has been drawn across them from Α, 



9 

therefore [according to Proposition VI.4 of Euclid] as ΚΘ is to ΘΛ, so ΔΖ is 
to ΖΗ. But ΚΘ [according to Proposition III.3 of Euclid] is equal to ΘΛ since ΚΛ is 
a chord in the circle ΒΓ perpendicular to the diameter. Therefore ΔΖ is equal to 
ΖΗ. 
 

[Proposition] 7 
 
 If a cone is cut by a plane through the axis, and if the cone is also cut by 
another plane, so that the plane of the base of the cone is cut in a straight line 
perpendicular either to the base of the axial triangle or to it continued, and if 
from the cutting plane’s resulting section on the cone’s surface, straight lines 
are drawn parallel to the straight line perpendicular to the base of the triangle, 
then these straight lines will fall on the common section of the cutting plane 
and of the axial triangle, and further continued to the other side of the  section, 
these straight lines will be bisected by the common section, and if the cone is 
right, then  the straight line in the base will be perpendicular to the common 
section of the cutting plane and of  the axial triangle, but if the cone is oblique, 
then the straight line in the base will be perpendicular to that common section 
only  whenever the plane through the axis is perpendicular to the base of the 
cone23,24. 
 Let there be a cone whose vertex is the point Α and whose base is the 
circle ΒΓ, and let it be cut by a plane through the axis, and let it make as a 
common section the triangle ΑΒΓ. And let it also be cut by another plane cut-
ting the plane of the circle ΒΓ in ΔΕ perpendicular either to ΒΓ or to it contin-
ued, and let it make as a section on the surface of the cone the line ΔΖΕ. Then 
ΖΗ is the common section of the cutting plane and of the triangle ΑΒΓ. And let 
some point Θ be taken on the section ΔΖΕ, and let ΘK be drawn through 
Θ parallel to ΔΕ. 
 I say that ΘΚ meets ΖΗ, and if continued to the other side of the section 
ΔΖΕ will be bisected by ΖΗ. 
 [Proof]. For since a cone whose vertex is the point Α and whose base is 
the circle ΒΓ has been cut by a plane through its axis, and makes as a section 
the triangle ΑΒΓ, and since some point Θ on the surface, not on a side of the 
triangle ΑΒΓ, has been taken, and since ΔΗ is perpendicular to [the straight line] 
ΒΓ, therefore the straight line drawn through Θ parallel to ΔΗ, that is ΘΚ, meets 
the triangle ΑΒΓ, and [according to Proposition I.6] if further continued to the 
other side of the surface, will be bisected by the triangle. 
 Then since the straight line drawn through Θ parallel to ΔΕ meets the tri-
angle ΑΒΓ and is in the planes of the section ΔΖΕ, therefore it will fall on the 
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common section of the cutting plane and of the triangle ΑΒΓ. But ΖΗ is the 
common section of the planes. Therefore the straight line drawn through Θ par-
allel to ΔΕ will fall on ΖΗ, and, if further continued to the other side of the sec-
tion ΔΖΕ, will be bisected by ΖΗ. 
 Then either the cone is right, or the axial triangle ΑΒΓ is perpendicular to 
the circle ΒΓ, or neither. 
 First let the cone be right. Then [according to Definition 3 and according 
to Proposition XI.18 of Euclid] the triangle ΑΒΓ would be perpendicular to the 
circle ΒΓ. Since then the plane ΑΒΓ is perpendicular to the plane [of the circle] 
ΒΓ, and ΔΕ has been drawn in one of these two planes, [the plane of the circle] 
ΒΓ, perpendicular to their common section, [the straight line] ΒΓ, therefore [ac-
cording to Definition XI.4 of Euclid] ΔΕ is perpendicular to the triangle ΑΒΓ, and 
therefore to all straight lines touching it and situated in the triangle ΑΒΓ.And so 
ΔΕ is also perpendicular to ΖΗ. 
 Then let the cone not be right. If now the axial triangle is perpendicular to 
the circle ΒΓ, we could likewise show that ΔΕ is perpendicular to ΖΗ. 
 Then let the axial triangle ΑΒΓ not be perpendicular to the circle ΒΓ. 
      I say that ΔΕ is not perpendicular to ΖΗ. For, if possible, let it be so. And it 
is also perpendicular to [the straight line] ΒΓ.Therefore ΔΕ is perpendicular to 
both ΒΓ and ΖΗ, and therefore it will be perpendicular to the plane through ΒΓ 
and ΖΗ. But the plane of through ΒΓ and HZ is the [plane of the] triangle ΑΒΓ, 
and therefore ΔΕ is perpendicular to the triangle ΑΒΓ. And therefore all planes 
through it are perpendicular to the triangle ΑΒΓ. But one of the planes through 
ΔΕ is the [plane of the] circle ΒΓ. Therefore the circle ΒΓ is perpendicular to the 
triangle ΑΒΓ. And so the triangle ΑΒΓ will also be perpendicular to the circle ΒΓ.  
And this is not supposed. Therefore ΔΕ is not perpendicular to ΖΗ. 
 

Porism 
 

         Then from this it is evident that ΖΗ is the diameter of the section ΔΖΕ, 
since it bisects the straight lines drawn parallel to some straight line ΔΕ, and it is 
evident that it is possible for some parallels to be bisected by the diameter ΖΗ 
and not be perpendicular to ΖΗ.  
 
                                                 [Proposition] 8 
 
 If a cone is cut by a plane through its axis, and if the cone is cut by an-
other plane cutting the base of the cone in a straight line perpendicular to the 
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base of the axial triangle, and if the diameter of the resulting section on the sur-
face is either parallel to one of the sides of the triangle or meets one of the 
sides continued beyond the vertex of the cone, and if both surface of the cone 
and cutting plane are continued indefinitely, then the section will also increase 
indefinitely and some straight line drawn from the section of the cone parallel to 
the straight line in the base of the cone will cut off  from the diameter on the 
side of the vertex a straight line equal to any given straight line25. 
 Let there be a cone whose vertex is the point Α and whose base is the 
circle ΒΓ, and let it be cut by a plane through its axis, and let it make as a sec-
tion the triangle ΑΒΓ. And let it be cut also by another plane cutting the circle 
ΒΓ in a straight line ΔΕ perpendicular to [the straight line] ΒΓ, and let it make as 
a section on the surface the line ΔΖΕ. And let the diameter ΖΗ of the section 
ΔΖΕ [according to Proposition I.7 and its porism] be either parallel to ΑΓ or on 
being continued meet it beyond the point Α. 
 I say that if both the surface of the cone and the cutting plane are con-
tinued indefinitely, the section ΔΖΕ also will increase indefinitely. 
 [Proof]. For let both the surface of the cone and the cutting plane are 
continued. Then it is evident that also ΑΒ, ΑΓ, ΖΗ will be therewith continued. 
Since ΖΗ is either parallel to ΑΓ or continued meets it beyond the point Α, there-
fore ΖΗ and ΑΓ on being continued in the direction of Γ and H will never meet. 
Then let them be continued and let some point Θ be taken at random on ΖΗ, 
and let ΚΘΛ be drawn through Θ parallel to ΒΓ, and ΜΘΝ parallel to ΔΕ. There-
fore the plane through ΚΛ and ΜΝ [according to Proposition XI.15 of Euclid] is 
parallel to the plane through ΒΓ and ΔΕ. Therefore [according to Proposition I.4] 
the plane ΚΛΜΝ is a [plane of a circle]. 
 And since the points Δ, Ε, Μ, Ν are in the cutting plane and also on the 
surface of the cone, therefore they are on the common section. Therefore the 
section ΔΖΕ has increased to the points Μ and Ν. Therefore, with the surface of 
the cone and the cutting plane increased to the circle ΚΛΜΝ, the section ΔΖΕ 
has also increased to the points Μ and Ν.Then likewise we could show also that 
if the surface of the cone and the cutting plane are continued indefinitely, the 
section ΜΔΖΕΝ will also increase indefinitely. 
 And it is evident that some straight line will cut off on straight line ΖΘ on 
the side of the point Ζ a straight line equal to any given straight line. For if we 
lay dawn ΖΞ equal to the given straight line, and draw a parallel to ΔΕ through Ξ, 
it will meet the section, just as the straight line through Θ was also proved to 
meet the section in the points Μ and Ν. And so some straight line is drawn 
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meeting the section, parallel to ΔΕ, and cutting off on ΖΗ on the side of point Ζ 
a straight line equal to the given straight line. 
 
 

[Proposition] 9 
 
 If a cone is cut by a plane, which meets both sides of the axial triangle 
and is neither parallel to the base [of the cone], nor antiparallel to it, then the 
section will not be a circle 26.  
 Let there be a cone whose vertex is the point Α and whose base is the 
circle ΒΓ, and let it be cut by some plane neither parallel to the base [of the 
cone], nor antiparallel to it, and let it make as a section on the surface the line 
ΔΚΕ.  
 I say that the line ΔΚΕ will not be a circle. 
 [Proof]. For, if possible, let it be, and let the cutting plane meet the base, 
and let ΖΗ be the common section of these planes, and let Θ be the center of 
the circle ΒΓ, and from Θ let ΘΗ be drawn perpendicular to ΖΗ.  And let a plane 
be drawn through ΗΘ and the axis and let [according to Proposition I.1] it make 
as sections on the conic surface ΒΑ and ΑΓ. Since then Δ, Ε, Η are points in the 
plane through the line ΔΚΕ, and also in the plane through the points Α, Β, Γ, 
therefore Δ, Ε, Η are points on the common section of these planes. Therefore 
[according to Proposition XI.3 of Euclid] ΗΕΔ is a straight line. 
 Then let some point Κ be taken on the line ΔΚΕ, and through Κ let ΚΛ be 
drawn parallel to ΖΗ. Then [according to Proposition I.7] ΚΜ will be equal to 
ΜΛ. Therefore ΔΕ is the diameter of the [supposed] circle ΔΞΛΕ. Then let 
ΝΜΞ be drawn through Μ parallel to ΒΓ. But ΚΛ is also parallel to ΖΗ.  
And so the plane through ΝΞ and ΚΜ [according to Proposition XI.15 of Euclid] 
is parallel to the plane through ΒΓ and ΖΗ, which is to the base, and the section 
[according to Proposition I.4] will be a circle. Let it be the circle ΝΚΞ. 
 And since ΖΗ is perpendicular to ΒΗ, and ΚΜ [according to Proposition 
XI.10 of Euclid] is also perpendicular to ΝΞ. And so [according to Proposition 
II.14 of Euclid] pl.ΝΜΞ is equal to sq.ΚΜ. 
 But pl.ΔΜΕ is equal to sq.ΚΜ for the line ΔΚΕΛ is supposed a circle, and 
ΔΕ is its diameter. 
 Therefore pl.ΝΜΞ is equal to pl.ΔΜΕ. Therefore [according to Proposition 
VI.16 of Euclid] as ΜΝ is to ΜΔ, so ΕΜ is to ΜΞ. 
 Therefore [according to Proposition VI.6 and Definition VI.1 of Euclid] the 
triangle ΔΜΝ is similar to the triangle ΞΜΕ, and the angle ΔΝΜ is equal to the 
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angle ΜΕΞ. But the angle ΔΝΜ is equal to the angle ΑΒΓ for ΝΞ is parallel to ΒΓ. 
And therefore the angle ΑΒΓ is equal to the angle ΜΕΞ. Therefore [according to 
Proposition I.5] the section is antiparallel to the base of the cone. And this is 
not supposed. Therefore the line ΔΚΕ is not a circle. 
 

[Proposition] 10 
  
 If two points are taken on the section of a cone, the straight line joining 
these two points will fall within the section, and continued in a straight line it 
will fall outside27. 
  Let there be a cone whose vertex is the point Α and whose base is the 
circle ΒΓ, and let it be cut by a plane through the axis, and let it make as a sec-
tion the triangle ΑΒΓ. Then let it also be cut [not through the vertex] by an-
other plane, and let it make as a section on the surface of the cone the line ΔΕΖ, 
and let two points Η and Θ be taken on the line ΔΕΖ.  I say that the straight line 
joining two points Η and Θ will fall within the line ΔΕΖ, and continued in a 
straight line it will fall outside. 
 [Proof]. For since a cone, whose vertex is the point Α and whose base is 
the circle ΒΓ, has been cut by a plane through the axis, and some points Η and Θ 
have been taken on its surface which are not on a side of the axial triangle and 
since the straight line joining Η and Θ does not verge to the point Α, therefore 
[according to Proposition I.2] the straight line joining H and Θ will fall within the 
cone, and continued in a straight line it will fall outside, consequently also out-
side the section ΔΖΕ. 
 

[Proposition] 11 
 
 If a cone is cut by a plane through its axis, and also cut by another plane 
cutting the base of the cone in a straight line perpendicular to the base of the 
axial triangle, and if further the diameter of the section is parallel to one  [lat-
eral] side of the axial triangle, and if any straight line is drawn from the section 
of the cone to its diameter such that this straight line is parallel to the common 
section of the cutting plane and of the cone’s base, then this straight line 
dropped to the diameter will equal in square to [the rectangular plane] under 
the  straight line from the section’s vertex to [the point] where the straight line  
dropped to the diameter cuts it off and  under another straight line which is to 
the straight line between the angle of the cone and the vertex of the section as 
the square on the base of the axial triangle to [the rectangular plane] under the 
remaining two sides of the triangle.  
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I call such a section a parabola28,29. 
 Let there be a cone whose vertex is the point Α and whose base is the 
circle ΒΓ, and let it be cut by a plane through its axis, and let it make as a sec-
tion the triangle ΑΒΓ. And let it also be cut by another plane cutting the base of 
the cone in the straight line ΔΕ perpendicular to [the straight line], ΒΓ and let it 
make as a section on the surface of the cone the line ΔΖΕ, and let the diameter 
of the section ΖΗ be parallel to one side ΑΓ of the axial triangle. And let ΖΘ be 
drawn from the point Ζ perpendicular to ΖΗ, and let it be contrived that as sq. 
ΒΓ is to pl. ΒΑΓ, so ΖΘ is to ΖΑ. 
 And let some point Κ be taken at random on the section, and through 
Κ let ΚΛ be drawn parallel to ΔΕ. 
 I say that sq. ΚΛ is equal to pl. ΘΖΛ. 
 [Proof]. For let ΜΝ be drawn through Λ parallel to ΒΓ. And ΔΕ is also paral-
lel to ΚΛ.Therefore [according to Proposition XI.15 of Euclid] the plane 
through ΚΛ and ΜΝ is parallel to the plane through ΒΓ and ΔΕ, which is to the 
base of the cone. Therefore [according to Proposition I.4] the plane through 
ΚΛ and ΜΝ is a circle whose diameter is ΜΝ. And ΚΛ is perpendicular to ΜΝ, 
since ΔΕ is also [according to Proposition XI.10 of Euclid] perpendicular to ΒΓ. 
Therefore [according to Proposition II.14 of Euclid] pl.ΜΛΝ is equal to sq.ΚΛ. 
 And since as sq.ΒΓ is to pl.ΒΑΓ, so ΘΖ is to ΖΑ, and [according to Propo-
sition VI.23 of Euclid] the ratio sq.ΒΓ to pl.ΒΑΓ is compounded30 of [the ratios] 
ΒΓ to ΓΑ and ΒΓ to ΒΑ. Therefore the ratio ΘΖ to ΖΑ ισ compounded of [the ra-
tios] ΒΓ to ΒΑ and ΜΝ to ΝΑ. But [according to Proposition VI.4 of Euclid] as 
ΒΓ is to ΓΑ so ΜΝ is to ΝΑ, and ΜΛ is to ΛΖ and [according to Propositions VI.2 
and VI.4 of Euclid] as ΒΓ is to ΒΑ, so ΜΝ is to ΜΑ, ΛΜ is to ΜΖ, and ΝΛ is to ΖΑ.  
 Therefore the ratio ΘΖ to ΖΑ is compounded of [the ratios] ΜΛ to ΛΖ and 
ΝΛ to ZA. But [according to Proposition VI.23 of Euclid] the ratio pl.ΜΛΝ to 
pl.ΛΖΑ is compounded of [the ratios] ΜΛ to ΛΖ and ΛΝ to ΖΑ. 
 Therefore as ΘΖ is to ΖΑ, so pl.ΜΛN is to pl.ΛΖΑ. 
 But, with ΖΛ taken as common height [of two rectangular planes, accord-
ing to Proposition VI.1 of Euclid] as ΘΖ is to ΖΑ, so pl.ΘΖΛ is to pl.ΛΖΑ. 
 Therefore [according to Proposition V.11 of Euclid] as pl.ΜΛΝ is to 
pl.ΛΖΑ, so pl.ΘΖΛ is to pl.ΛΖΑ. 
 Therefore [according to Proposition V.9 of Euclid] pl.ΜΛΝ is equal to 
pl.ΘΖΛ. 
 But pl.ΜΛΝ is equal to sq.ΚΛ; therefore also sq.ΚΛ is equal to pl.ΘΖΛ. 
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         I will call such a section a parabola, and ΘΖ be called the straight line of 
application [of rectangular planes] to which the ordinates drawn to ΖΗ are equal 
in square. I will call this straight line also the latus rectum. 
 

[Proposition] 12 
 
 If a cone is cut by a plane through its axis, and also cut by another plane 
cutting the base of the cone in a straight line perpendicular to the base of the 
axial triangle, and if the diameter of the section continued meets [continued] 
one [lateral] side of the axial triangle beyond the vertex of the cone, and if any 
straight line is drawn from the section to its diameter such that this straight line 
is parallel to the common section of the cutting plane and of the cone’s base, 
then this straight line to the diameter will equal in square to some [rectangular]  
plane which is applied to a straight line increased by the segment added  along 
the diameter of the section, such that this added  segment subtends the exte-
rior angle of the [vertex of the axial] triangle, and as the added segment, is to 
the mentioned  the straight line, so the square on the straight line drawn parallel 
to the section’s diameter from the cone’s vertex to the [axial] triangle’s base is 
to the [rectangular] plane under the segments of the triangle’s base  divided by 
the straight line drawn from the vertex [of the cone], and the applied plane has 
as breadth the straight line on the diameter from the section’s vertex to [the 
point] where the diameter is cut off by the straight line drawn from the section 
to the diameter, this plane is [the rectangular plane  under two mentioned  
straight lines] and increased by a figure similar and similarly situated to the 
plane under the mentioned straight line and the diameter. 
I will call such a section a hyperbola31.  
 Let there be a cone whose vertex is the point Α and whose base is the 
circle ΒΓ, and let it be cut by a plane through its axis, and let it make as a sec-
tion the triangle ΑΒΓ. And let the cone also be cut by another plane cutting the 
base of the cone in ΔΕ perpendicular to ΒΓ, the base of the triangle ΑΒΓ, and let 
this second cutting plane make as a section on the surface of the cone the line 
ΔΖΕ, and let the diameter of the section ΖΗ [according to Proposition I.7 and 
Definition 4] when continued meet ΑΓ, one [lateral] side of the trian-
gle ΑΒΓ beyond the vertex of the cone at Θ. And let ΑΚ be drawn through 
Α parallel to the diameter of the section ΖΗ, and let it cut ΒΓ [at K]. And let ΖΛ 
be drawn from Ζ perpendicular to ΖΗ, and let it be contrived that as sq.ΚΑ is to 
pl.ΒΚΓ, so ΖΘ is to ΖΛ. 
 And let some point Μ be taken at random on the section and through Μ 
let ΜΝ be drawn parallel to ΔΕ, and through Ν let ΝΟΞ be drawn parallel to ΖΛ. 
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And let ΘΛ be joined and continued to Ξ, and let ΛΟ and ΞΠ be drawn through Λ 
and Ξ parallel to ΖΝ. 
 I say that ΜΝ is equal in square to the rectangular plane ΖΞ, which is ap-
plied to ΖΛ having ΖΝ as breadth, and increased by a figure ΛΞ similar to pl. ΘΖΛ.                       
 [Proof]. For let ΡΝΣ be drawn through Ν parallel to ΒΓ. And ΝΜ is also par-
allel to ΔΕ. Therefore [according to Proposition XI.15 of Euclid] the plane 
through ΜΝ and ΡΣ is parallel to the plane through ΒΓ and ΔΕ, which is to the 
base of the cone. Therefore if the plane is drawn through ΜΝ and ΡΣ, the sec-
tion [according to Proposition I.4] will be a circle whose diameter is ΡΝΣ. And 
ΜΝ is perpendicular to it. Therefore pl.ΡΝΣ is equal to sq.ΜΝ. 
 And since as sq.ΑΚ is to pl.ΒΚΓ, so ΖΘ is to ΖΛ, and [according to Propo-
sition VI.23 of Euclid] the ratio sq.ΑΚ to pl.ΒΚΓ is compounded of [the ra-
tios] ΑΚ to ΚΓ and ΑΚ to ΚΒ, therefore also the ratio ΖΘ to ΖΛ is compounded 
of [the ratios] ΑΚ to ΚΓ and ΑΚ to ΚΒ. 
      But [according to Proposition VI.4 of Euclid] as ΑΚ is to ΚΓ, so ΘΗ is to ΗΓ, 
and ΘΝ is to ΝΣ and as ΑΚ is to ΚΒ, so ΖΗ is to ΗΒ and ΖΝ is to ΝΡ. 
      Therefore the ratio ΘΖ to ΖΛ is compounded of [the ratios] ΘΝ to ΝΣ and 
ΖΝ to ΝΡ. And [according to Proposition VI.23 of Euclid] the ratio pl.ΘΝΖ to 
pl.ΣΝΡ is compounded of [the ratios] ΘΝ to ΝΣ and ΖΝ to ΝΡ. 
 Therefore also [according to Proposition VI.4 of Euclid] as pl.ΘΝΖ is to 
pl.ΣΝΡ, so ΘΖ is to ΖΛ and ΘΝ is to ΝΞ. 
 But, with ΖΝ taken as common height [according to Proposition VI.1 of 
Euclid] as ΘΝ is to ΝΞ, so pl.ΘΝΖ is to pl.ΖΝΞ. 
 Therefore also [according to Proposition V.11 of Euclid] as pl.ΘΝΖ is to 
pl.ΣΝΡ, so pl.ΘΝΖ is to pl.ΞΝΖ, and [according to Proposition V.9 of Euclid] 
pl.ΣΝΡ is equal to pl.ΞΝΖ. 
 But it was shown that sq.ΜΝ is equal to pl.ΣΝΡ, therefore also sq.ΜΝ is 
equal to pl.ΞΝΖ. 
 But pl.ΞΝΖ is the parallelogram ΞΖ. Therefore ΜΝ is equal in square to ΞΖ 
which is applied to ΖΛ and having ΖΝ as breadth increased by the parallelogram 
ΛΞ similar to pl.ΘΖΛ. I will call such a section a hyperbola, and ΛΖ be called the 
straight line of application [of rectangular planes] to which the ordinates drawn 
to ΖΗ are equal in square.  
 I will call this straight line also the latus rectum, and the straight line 
ΖΘ the latus transversum. 
 

[Proposition] 13 
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 If a cone is cut by a plane through its axis, and is also cut by another 
plane which on the one hand meets both [lateral] sides of the axial triangle, and 
on the other hand, when continued, is neither parallel to the base [of the cone] 
nor antiparallel to it, and if the plane of the base of the cone and the cutting 
plane meet in a straight line perpendicular either to the base of the axial triangle 
or to it continued, then any [straight] line drawn parallel to the common section 
of the [base and cutting] planes from the section of the cone to the diameter 
of the section will  be equal in square to some [rectangular]  plane applied to a 
straight line to which the diameter of the section  is as the square on the 
straight line drawn parallel to the section’s diameter  from the cone’s vertex to 
the [axial] triangle’s base to the [rectangular]  plane under the straight lines cut 
[on the axial triangle’s base] by this straight line in the direction of the sides of 
the [axial] triangle,  and the  applied plane has as breadth the straight line on 
the diameter from the section’s vertex to [ the point] where the diameter is cut 
off by the straight line drawn from the section to the diameter, this plane is 
[the rectangular plane under two  mentioned straight lines] and decreased  by a 
figure similar  and similarly situated to the plane under the  mentioned straight 
line and  the diameter. I will call such a section an ellipse32.   
 Let there be a cone whose vertex is the point Α and whose base is the 
circle ΒΓ, and let it be cut by a plane through its axis, and let it make as a sec-
tion the triangle ΑΒΓ. And let it also be cut by another plane on the one hand 
meeting both [lateral] sides of the axial triangle and on the other hand contin-
ued neither parallel to the base of the cone, nor antiparallel to it, and let it make 
as a section on the surface of the cone the [closed curved] line ΔΕ. And let the 
common section of the cutting plane and of the plane of the base of the 
cone be ΖΗ perpendicular to ΒΓ, and let [according to Proposition I.7 and Defini-
tion 4] the diameter of the section be [the straight line] ΕΔ. And let ΕΘ be 
drawn from Ε perpendicular to [the diameter] ΕΔ, and let ΑΚ be drawn through 
Α parallel to ΕΔ, and let it be contrived that as sq.ΑΚ is to pl.ΒΚΓ, so ΔΕ is to 
ΕΘ. 
 And let some point Λ be taken [at random] on the section, and let ΛΜ be 
drawn through Λ parallel to ΖΗ.  
 I say that ΛΜ is equal in square to the rectangular plane, which is applied 
to ΕΘ and having ΕΜ as breadth, and decreased by a figure similar to pl.ΔΕΘ.                               
 [Proof]. For let ΔΘ be joined, and on the one hand let ΜΞΝ be drawn 
through Μ parallel to ΘΕ, and on the other hand let ΘΝ and ΞΟ be drawn through 
Θ and Ξ parallel to ΕΜ, and let ΠΜΡ be drawn through Μ parallel to ΒΓ 
 Since then ΠΡ is parallel to ΒΓ, and ΛΜ is also parallel to ΖΗ, therefore  
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[according to Proposition XI.15 of Euclid] the plane through ΛΜ and ΠΡ is paral-
lel to the plane through ΖΗ and ΒΓ, which is to the base of the cone.   
 If therefore a plane is drawn through ΛΜ and ΠΡ, the section [according 
to Proposition I.4] will be a circle whose diameter is ΠΡ. And ΛΜ is perpendicular 
to it. Therefore [according to Proposition II.14 of Euclid] pl.ΠΜΡ is equal to 
sq.ΛΜ. 
 And since as sq.ΑΚ is to pl.ΒΚΓ, so ΕΔ is to ΕΘ, and [according to Propo-
sition VI.23 of Euclid] the ratio sq.ΑΚ to pl.ΒΚΓ is compounded of [the ra-
tios] ΑΚ to ΚΒ and ΑΚ to ΚΓ. 
 But [according to Proposition VI.4 of Euclid] as ΑΚ is to ΚΒ, so ΕΗ is to 
ΗΒ and ΕΜ is to ΜΠ, and as ΑΚ is to ΚΓ, so ΔΗ is to ΗΓ and ΔΜ is to ΜΡ, 
 Therefore the ratio ΔΕ to ΕΘ is compounded of the [ratios] ΕΜ to ΜΠ and 
ΔΜ to ΜΡ. 
       But [according to Proposition VI.23 of Euclid] the ratio pl.ΕΜΔ to 
pl.ΠΜΡ is compounded of the [ratios] ΕΜ to ΜΠ and ΔΜ to ΜΡ. 
  Therefore [according to Proposition VI.4 of Euclid] as pl.ΕΜΔ is to 
pl.ΠΜΡ, so ΔΕ is to ΕΘ and ΔΜ is to ΜΞ. 
 And with the straight line ΜΕ taken as common height [according to  
Proposition VI.1 of Euclid] as ΔΜ is to ΜΞ, so pl.ΔΜΕ is to pl.ΞΜΕ. 
 Therefore also [according to Proposition V.11 of Euclid] as pl.ΔΜΕ is to 
pl.ΠΜΡ, so pl.ΔΜΕ is to pl.ΞΜΕ. 
Therefore [according to Proposition V.9 of Euclid] pl.ΠΜΡ is equal to pl.ΞΜΕ. 
 But it was shown that pl.ΠΜΡ is equal to sq.ΛΜ, therefore also pl.ΞΜΕ is 
equal to sq.ΛΜ. 
 Therefore ΛΜ is equal in square to the parallelogram ΜΟ, which is applied 
to ΘΕ and having ΕΜ as breadth and decreased by the figure ΟΝ similar to 
pl.ΔΕΘ. 
   I will call such a section an ellipse, and let ΕΘ be called the straight line 
of application [of rectangular planes] to which the ordinates drawn to ΔΕ are 
equal in square. I will call this straight line also the latus rectum, and the straight 
line ΕΔ the latus transversum 33-38. 
 

[Proposition] 14 
 
 If the vertically opposite surfaces are cut by a plane not through the ver-
tex, the section on each of two surfaces will be that which is called the hyper-
bola, and the diameter of these two hyperbolas will be the same straight line, 
and the straight lines, to which straight lines drawn to the diameter parallel to 
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the straight line in the cone’s base are applied in square, are equal, and the latus 
transversum of the eidos39 [of these hyperbolas], that is the straight line situ-
ated between the vertices of the hyperbolas is common.  I call such hyperbolas 
opposite 40. 
 Let there be the vertically opposite surfaces whose vertex is the point 
Α and let them be cut by a plane not through the vertex and let it make as sec-
tions on the surface the lines ΔΕΖ and ΗΘΚ. 
 I say that each of the two sections ΔΕΖ and ΗΘΚ is the so-called hyper-
bola. 
 [Proof]. For let there be the circle ΒΔΓΖ along which the line generating 
the surface moves, and let the plane ΞΗΟΚ be drawn parallel to it on the verti-
cally opposite surfaces, and ΖΔ and ΗΚ [according to Proposition I.4] are com-
mon sections of the plane of the sections ΗΘΚ and ΖΕΔ, and of the [planes of 
the] circles. Then [according to Proposition XI.16 of Euclid] they will be parallel. 
And let the axis of the conic surface be the straight line ΛΑΥ and the centers of 
the circles be Λ and Υ, and let a straight line drawn from Λ perpendicular 
to ΖΔ be continued to the points Β and Γ, and let a plane be drawn through 
ΒΓ and the axis. Then [according to Proposition XI.16 of Euclid] it will make as 
sections in the [planes of the] circles the parallel straight lines ΞΟ and ΒΓ, and 
on the surface [according to Proposition I.1 and Definition1] ΒΑΟ and ΓΑΞ. 
 Then ΞΟ will be perpendicular to ΗΚ, since ΒΓ is also perpendicular to ΖΔ, 
and [according to Proposition XI.10 of Euclid] each of these two [straight lines] 
is parallel to the other. And since the plane through the axis meets the sections 
in the points Μ and Ν within the [curved] lines [ΖΔ and ΗΚ], it is clear that the 
plane through the axis also cuts the [curved] lines. Let it cut them at Θ and Ε. 
Therefore Μ, Ε, Θ and Ν are points on the plane through the axis and in the 
plane of the [curved] lines, therefore [according to Proposition XI.3 of Euclid] 
the line ΜΕΘΝ is a straight line. It is also evident both that Ξ, Θ, Α, and Γ are in a 
straight line and Β, Ε, Α, and Ο also for [according to Proposition I.1]; they are 
both on the conic surface and in the plane through the axis. Let then ΘΡ and 
ΕΠ be drawn from Θ and Ε perpendicular to ΘΕ, and let ΣΑΤ be drawn 
through Α parallel to ΜΕΘΝ, and let it be contrived that as ΘΕ is to ΕΠ, so sq.ΑΣ 
is to pl.ΒΣΓ, and as ΕΘ is to ΘΡ, so sq.ΑΤ is to pl.ΟΤΞ. 
 Since then a cone whose vertex is the point Α and whose base is the cir-
cle ΒΓ has been cut by a plane through its axis, and it has made as a section the 
triangle ΑΒΓ, and it has also been cut by another plane cutting the base of the 
cone in ΔΜΖ perpendicular to ΒΓ, and it has made as a section on the surface 
the line ΔΕΖ and the diameter ΜΕ continued has met one side of the axial trian-
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gle beyond the vertex of the cone, and through Α the straight line ΑΣ has been 
drawn parallel to the diameter of the section ΕΜ, and from Ε the straight line ΕΠ 
has been drawn perpendicular to ΕΜ, and as ΕΘ is to ΕΠ, so sq.ΑΣ is to pl.ΒΣΓ, 
therefore [according to Proposition I.12] the section ΔΕΖ is a hyperbola, and ΕΠ 
is the latus rectum of the eidos of this hyperbola , and ΘΕ is the latus transver-
sum of this eidos . Likewise ΗΘΚ is also a hyperbola whose diameter is ΘΝ and 
the latus rectum of whose eidos is ΘΡ, and the latus transversum of whose ei-
dos is ΘΕ. 
 I say that ΘΡ is equal to ΕΠ. 
 [Proof]. For since ΒΓ is parallel to ΞΟ, as ΑΣ is to ΣΓ, so ΑΤ is to ΤΞ, and 
as ΑΣ is to ΣΒ, so ΑΤ is to ΤΟ. 
 But [according to Proposition VI.23 of Euclid] the ratio sq. ΑΣ to pl. 
ΒΣΓ is compounded of [the ratios] ΑΣ to ΒΣ and ΑΣ to ΣΓ and the ratio sq. ΑΤ 
to pl. ΞΤΟ is compounded of [the ratios] ΑΤ to ΤΞ and ΑΤ to ΤΟ, therefore as 
sq.ΑΣ is to pl.ΒΣΓ, so sq.ΑΤ is to pl.ΞΤΟ. Also as sq.ΑΣ is to pl. ΒΣΓ, so ΘΕ is to 
ΕΠ, and sq.ΑΤ is to pl.ΞΤΟ, so ΘΕ is to ΘΡ.Therefore also [according to Proposi-
tion V.11 of Euclid] as ΘΕ is to ΕΠ, so ΕΘ is to ΘΡ.  Therefore [according to 
Proposition V.9 of Euclid] ΕΠ is equal to ΘΡ 41. 
 

[Proposition] 15 
 
 If in an ellipse a straight line drawn as an ordinate from the midpoint of 
the diameter is continued both ways to the section, and if it is contrived that as 
the continued straight line is to the diameter, so the diameter is to some 
straight line, then any straight line which is drawn parallel to the diameter from 
the section to the continued straight line will be equal in square to the plane 
which is applied to this third proportional and which has as breadth the contin-
ued straight line from the section to [the point] where the straight line drawn 
parallel to the diameter cuts it off, but such this plane is decreased by a figure 
similar to the rectangular plane under the continued straight line to which the 
straight lines are drawn and the latus rectum,  [that is the third proportional] 
and if the straight line drawn parallel to the diameter is further continued to the 
other side of the section, this drawn straight line will be bisected by the contin-
ued straight line to which it has been drawn42. 
 Let there be an ellipse whose diameter is ΑΒ, and let ΑΒ be bisected at 
the point Γ, and through Γ let ΔΓΕ be drawn as an ordinate and continued both 
ways to the section, and from Δ let ΔΖ be drawn perpendicular to ΔΕ. 
 And let it be contrived that as ΔΕ is to ΑΒ, so ΑΒ is to ΔΖ. 
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 And let some point Η be taken on the section, and through Η let ΗΘ be 
drawn parallel to ΑΒ, and let ΕΖ be joined, and through Θ let ΘΛ be drawn paral-
lel to ΔΖ, and through Ζ and Λ let ΖΚ and ΛΜ be drawn parallel to ΘΔ. 
 I say that ΗΘ is equal in square to the [rectangular] plane ΔΛ which is ap-
plied to ΔΖ and having as breadth ΔΘ and decreased by a figure ΛΖ similar to 
pl.ΕΔΖ [that is ΔΕ is the diameter conjugate to the diameter ΑΒ, and ΔΖ is the 
latus rectum for the ordinates to ΔΕ]. 
 [Proof]. For let ΑΝ be the latus rectum for the ordinates to ΑΒ and let 
ΒΝ be joined, and through Η let ΗΞ be drawn parallel to ΔΕ, and through Ξ and Γ 
let ΞΟ and ΓΠ be drawn parallel to ΑΝ, and through Ν, Ο, and Π let ΝΥ, ΟΣ, and 
ΤΠ be drawn parallel to ΑΒ.  
 Therefore sq.ΔΓ is equal to [the plane] ΑΠ, and [according to Proposition 
I.13] sq.ΗΞ ισ equal to [the plane] ΑΟ. 
 And since [according to Proposition VI.4 of Euclid] as ΒΑ is to ΑΝ, so ΒΓ 
is to ΓΠ, and ΠΤ is to ΤΝ and ΒΓ is equal to ΓΑ and is equal to ΤΠ, and ΓΠ is 
equal to ΤΑ. Therefore [the plane] ΑΠ is equal to [the plane] ΤΡ, and [the plane] 
ΞΤ is equal to [the plane] ΤΥ. 
 Since also [according to Proposition I.43 of Euclid the plane] ΟΤ is equal 
to [the plane] ΟΡ, and [the plane] ΝΟ is common, therefore [the plane] ΤΥ is 
equal to [the plane] ΝΣ. 
 But [the plane] ΤΥ is equal to [the plane] ΤΞ, and [the plane] ΤΣ is com-
mon. Therefore [the plane] ΝΠ is equal to [the plane] ΠΑ and is equal to [the 
planes] ΑΟ and ΠΟ, and so [the plane] ΠΑ without [the plane] ΑΟ is equal to 
[the plane] ΠΟ. 
 Also [the plane] ΑΠ is equal to sq.ΓΔ, [the plane] ΑΟ is equal to sq.ΞΗ and 
[the plane] ΟΠ is equal to pl.ΟΣΠ, therefore sq.ΓΔ without sq.ΗΞ is equal to 
pl.ΟΣΠ. 
 Since also ΔΕ has been cut into equal parts at Γ, and into unequal parts at 
Θ, therefore [according to Proposition II.5 of Euclid] the sum of pl.ΕΘΔ and 
sq.ΓΘ is equal to sq.ΓΔ, or the sum of pl.ΕΘΔ and sq.ΞH is equal to sq.ΓΔ. 
 Therefore sq.ΓΔ without sq.ΞΗ is equal to pl.ΕΘΔ, but sq.ΓΔ without 
sq.ΞΗ is equal to pl.ΟΣΠ, therefore pl.ΕΘΔ is equal to pl.ΟΣΠ. 
And since as ΔΕ is to ΑΒ, so ΑΒ is to ΔΖ, therefore [according to the porism to 
Proposition VI.19 of Euclid] as ΔΕ is to ΔΖ, so sq.ΔΕ is to sq.ΑΒ, which is [ac-
cording to Proposition V.15 of Euclid] as ΔΕ is to ΔΖ, so sq.ΓΔ is to sq.ΓΒ. 
 And [according to Proposition I.13] pl.ΠΓΑ is equal to pl.ΠΓΒ, and is equal 
to sq.ΓΔ, and since [according to Proposition VI.4 of Euclid] as ΔΕ is to ΔΖ, so 
ΕΘ is to ΘΛ, or [according to Propositions VI.1 and V.11 of Euclid] as ΔΕ is to 
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ΔΖ, so pl.ΕΘΔ is to pl.ΔΘΛ, and since as ΔΕ is to ΔΖ, so pl.ΠΓΒ is to sq.ΓΒ, and as 
pl.ΠΓΒ is to sq.ΓΒ, so pl.ΟΣΠ is to sq.ΟΣ, therefore also as pl. ΕΘΔ is to pl.ΔΘΛ, 
so pl.ΟΣΠ is to sq.ΟΣ. 
 And pl.ΕΘΔ is equal to pl.ΟΣΠ, therefore pl. ΔΘΛ is equal to sq.ΟΣ and is 
equal to sq.ΗΘ. 
 Therefore ΗΘ is equal in square to [the plane] ΔΛ, which is applied to ΔΖ, 
decreased by a figure ΖΛ similar to pl.ΕΔΖ. 
 I say then that also, if continued to the other side of the section, ΗΘ will 
be bisected by ΔΕ. 
 [Proof]. For let it be continued and let it meet the section at Φ and let ΦΧ 
be drawn through Φ parallel to ΗΞ, and through Χ let ΧΨ be drawn parallel to 
ΑΝ. And since ΗΞ is equal to ΦΧ, therefore also sq.ΗΞ is equal to sq.ΦΧ. 
 But [according to Proposition I.13] sq.ΗΞ is equal to pl.ΑΞO and sq.ΦΧ is 
equal to pl.ΑΧΨ. 
 Therefore [according to Proposition VI.16 of Euclid] as ΟΞ is to ΨΧ, so ΧΑ 
is to ΑΞ. 
 And [according to Proposition VI.4 of Euclid] as ΟΞ is to ΨΧ, so ΞΒ is to 
ΒΧ, therefore also as ΧΑ is to ΑΞ, so ΞΒ is [according to Proposition V.17 of 
Euclid] as ΧΞ is to ΑΞ, so ΧΞ is to ΒΧ. Therefore ΑΞ is equal to ΧΒ. And also ΑΓ 
is equal to ΓΒ. Therefore also the remainders ΞΓ is equal to ΓΧ, and so also ΗΘ 
is equal to ΘΦ. 
 Therefore ΘΗ, continued to the other side of the section, is bisected by 
ΔΘ. 
 

[Proposition] 16 
  
 If through the midpoint of the latus transversum of the opposite hyperbo-
las a straight line be drawn parallel to an ordinate, it will be a diameter of the 
opposite hyperbolas conjugate to the diameter just mentioned43. 
 Let there be the opposite hyperbolas whose diameter is ΑΒ, and let ΑΒ be 
bisected at Γ and through Γ let ΓΔ be drawn parallel to an ordinate. 
 I say ΓΔ is a diameter conjugate to ΑΒ. 
 [Proof]. For let ΑΕ and ΒΖ be the latera recta for the ordinates to ΑΒ, and 
let ΑΖ and ΒΕ be joined and continued, and let some point Η be taken at random 
on either section, and through H let ΗΘ be drawn parallel to ΑΒ, and from Η and 
Θ let ΗΚ and ΘΛ be drawn as ordinates, and through Κ and Λ let ΚΜ and ΛΝ be 
drawn parallel to ΑΕ and ΒΖ. Since then [according to Proposition I.34 of Euclid] 
ΗΚ is equal to ΘΛ, therefore also sq.ΗΚ is equal to sq.ΘΛ. 
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 But [according to Proposition I.12] sq.ΗΚ is equal to pl.ΑΚΜ and sq.ΘΛ is 
equal to pl.ΒΛΝ. Therefore pl.ΑΚΜ is equal to pl.ΒΛΝ. 
 And since [according to Proposition I.14] ΑΕ is equal to ΒΖ, therefore 
[according to Proposition V.7 of Euclid] as ΑΕ is to ΑΒ, so ΒΖ is to ΒΑ. 
 But [according to Proposition VI.4 of Euclid] as ΑΕ is to ΑΒ, so ΜΚ is to 
ΚΒ, and as ΒΖ is to ΒΑ, so ΝΛ is to ΛΑ. Therefore as ΜΚ is to ΚΒ, so ΝΛ is 
to ΛΑ. 
 But, with ΚΑ taken as common height, as ΜΚ is to ΚΒ, so pl.ΜΚΑ is to 
pl.ΒΚΑ, and, with ΒΛ taken as common height, as ΝΛ is to ΛΑ, so pl.ΝΛΒ is to 
pl.ΑΛΒ. 
 And therefore as pl.ΜΚΑ is to pl.ΒΚΑ, so pl.ΝΛΒ is to pl.ΑΛΒ. 
 And alternately [according to Proposition V.16 of Euclid] as pl.ΜΚΑ is to 
pl.ΝΛΒ, so pl.ΒΚΑ is to pl.ΑΛΒ.  
 And above was proved that pl.ΑΚΜ is equal to pl.ΒΛΝ, therefore pl.ΒΚΑ is 
equal to pl.ΑΛΒ. Therefore ΑΚ is equal to ΛΒ. 
 But also ΑΓ is equal to ΓΒ, and therefore ΚΓ is equal to ΓΛ, and so also 
ΗΞ is equal to ΞΘ. 
 Therefore ΗΘ is bisected by ΞΓΔ, and is parallel to ΑΒ. Therefore ΞΓΔ is 
the diameter and conjugate to ΑΒ. 
 

Second definitions 
 
 9. Let the midpoint of the diameter of both the hyperbola and the ellipse 
be called the center44 of the section, and let the straight line drawn from the 
center to meet the section be called the radius of the section. 
 10. And likewise let the midpoint of the latus transversum of the opposite 
hyperbolas be called the center. 
 11. And let the straight line drawn from the center [of the hyperbola or 
of the ellipse] parallel to an ordinate, being a mean proportional to the sides of 
the eidos and bisected by the center, be called the second diameter45. 
 

[Proposition] 17 
 
 If in a section of a cone a straight line is drawn from the vertex of the 
section and parallel to an ordinate it will fall outside the section46. 
         Let there be a section of a cone whose diameter is ΑΒ. 
 I say that the straight line drawn from the vertex, that is from the point 
Α, parallel to an ordinate, will fall outside the section. 
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 [Proof]. For, if possible, let it fall within as ΑΓ. Since then a point Γ has 
been taken at random on a section of a cone, therefore the straight line drawn 
from Γ within the section parallel to an ordinate will meet the diameter ΑΒ and 
[according to Proposition I.7] will be bisected by it. Therefore ΑΓ continued will 
be bisected by ΑΒ. And this is impossible for ΑΓ, if continued, [according to 
Proposition I.10] will fall outside the section. Therefore the straight line drawn 
from the point Α parallel to an ordinate will not fall within the section, therefore 
it will fall outside, and so it is tangent to the section. 
  

[Proposition] 18 
 
 If a straight line meeting a section of a cone and continued both ways, 
falls outside the section, and some point is taken within the section, and 
through it a parallel to the straight line meeting the section is drawn, the parallel 
so drawn, if continued both ways, will meet the section47.  
  Let there be a section of a cone and the straight line ΑΖΒ meeting it, and 
let it fall, when continued both ways, outside the section. And let some point Γ 
be taken within the section, and through Γ let ΓΔ be drawn parallel to ΑΒ. 
 I say that ΓΔ continued both ways will meet the section. 
 [Proof]. For, let some point Ε be taken on the section, and let ΕΖ be 
joined. And since ΑΒ is parallel to ΓΔ, and some straight line ΕΖ meets ΑΒ, 
therefore ΓΔ continued will also meet ΕΖ. And if it meets ΕΖ between Ε and Ζ, it 
is evident that it also meets the section, but if it meets it beyond Ε, that will 
first meet the section. Therefore, if ΓΔ is continued to the side of Δ and Ε, it 
meets the section. Then likewise we could show that, if it is continued to the 
side of Ζ and Β, it also meets it. 

Therefore, ΓΔ continued both ways will meet the section. 
 

[Proposition] 19 
 
 In every section of a cone any straight line drawn from the diameter paral-
lel to an ordinate will meet the section48. 
 Let there be a section of a cone whose diameter is ΑΒ, and let some point 
Β be taken on the diameter, and through Β let ΒΓ be drawn parallel to an ordi-
nate. 
 I say that ΒΓ continued will meet the section. 
 [Proof]. For let some point Δ be taken on the section. But Α is also on the 
section; therefore the straight line joined from Α to Δ [according to Proposition 
I.10] will fall within the section. And since the straight line drawn from Α parallel 
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to an ordinate [according to Proposition I.17] falls outside the section, and 
ΑΔ meets it, and ΒΓ is parallel to the ordinate, therefore ΒΓ will also meet ΑΔ. 
And if it meets ΑΔ between Α and Δ, it is evident that it will also meet the sec-
tion, but, if it meets if beyond Δ as at Ε, that it will first meet the section. 
Therefore the straight line drawn from Β parallel to an ordinate will meet the 
section. 
 

[Proposition]  20 
 

 If in a parabola two straight lines are dropped as ordinates to the diame-
ter, the squares on them will be to each other as the straight lines cut off by 
them on the diameter beginning from the vertex are to each other49. 
 Let there be a parabola whose diameter is ΑΒ, and let some points Γ and 
Δ be taken on it, and from Γ and Δ let ΓΕ and ΔΖ be dropped as ordinates to ΑΒ. 
 I say that as sq.ΔΖ is to sq.ΓΕ, so ΖΑ is to ΑΕ. 
 [Proof]. For let ΑΗ be the latus rectum for the ordinates to the diameter. 
Therefore [according to the Proposition I.11] sq.ΔΖ is equal to pl.ΖΑΗ and 
sq.ΓΕ is equal to pl.ΕΑΗ. 
 Therefore as sq.ΔΖ is to sq.ΓΕ, so pl.ΖΑΗ is to pl.ΕΑΗ. 
 But [according to Proposition VI.1 of Euclid] as pl.ΖΑΗ is to pl.ΕΑΗ, so ΖΑ 
is to ΑΕ, and therefore as sq.ΔΖ is to sq.ΓΕ, so ΖΑ is to ΑΕ. 
 

[Proposition] 21 
 
If in a hyperbola or an ellipse or in the circumference of a circle50 [two] straight 
lines are dropped as ordinates to the diameter, the squares on them will be to 
the [rectangular] planes under the straight lines cut off by them beginning from 
the [both] ends of the latus transversum of the eidos as the latus rectum of the 
eidos is to the latus transversum, and to each other as the planes under the 
straight lines cut off as we have said51. 
 Let there be a hyperbola or an ellipse or the circumference of a circle 
whose diameter is ΑΒ and whose latus rectum for the ordinates to the diameter 
is ΑΓ, and let the ordinates ΔΕ and ΖΗ be dropped to the diameter. 
 I say that as sq.ΖΗ is to pl.ΑΗΒ, so ΑΓ is to ΑΒ, and as sq.ΖΗ is to sq.ΔΕ, 
so pl.ΑΗΒ is to pl.ΑΕΒ. 
 [Proof]. For let ΒΓ determining the eidos be joined, and through Ε and Η 
let ΕΘ and ΗΚ be drawn parallel to ΑΓ. Therefore [according to Propositions I.12 
and I.13] sq.ΖΗ is equal to pl.ΚΗΑ, and sq.ΔΕ is equal to pl.ΘΕΑ. 
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 And since as ΚΗ is to ΗΒ, so ΓΑ is to ΑΒ, and with ΑΗ taken as common 
height as ΚΗ is to ΗΒ, so pl.ΚΗΑ is to pl.ΒΗΑ, therefore as ΓΑ is to ΑΒ, so 
pl.ΚΗΑ is to pl.ΒΗΑ, or as ΓΑ is to ΑΒ, so sq.ΖΗ is to pl.ΒΗΑ. 
 Then also for the same reasons as ΓΑ is to ΑΒ, so sq.ΔΕ is to pl.ΒΕΑ.  
 And therefore as sq.ΖΗ is to pl.ΒΗΑ, so sq.ΔΕ is to pl.ΒΕΑ, and alternately 
as sq.ΖΗ is to sq.ΔΕ, so pl.ΒΗΑ is to pl.ΒΕΑ. 
 

[Proposition] 22 
 
 If a straight line cuts a parabola or a hyperbola at two points not meeting 
the diameter inside, it will, if continued, meet the diameter of the section out-
side the section52. 
 Let there be a parabola or a hyperbola whose diameter is ΑΒ, and let 
some straight line cut the section at two points Γ and Δ [and do not cut the di-
ameter ΑΒ]. 
 I say that ΔΓ, if continued, will meet ΑΒ outside the section. 
 [Proof]. For let ΓΕ and ΔΒ be dropped as ordinates from Γ and Δ, and first 
let the section be a parabola. Since then in the parabola [according to Proposi-
tion I.20] as sq.ΓΕ is to sq.ΔΒ, so ΕΑ is to ΑΒ and ΕΑ is greater than ΑΒ, there-
fore also sq.ΓΕ is greater than sq.ΔΒ. 
And so also ΓΕ is greater than ΔΒ. 
 And they are parallel; therefore [according to Proposition I.10] ΓΔ contin-
ued will meet ΑΒ outside the section. 
 But then let it be a hyperbola [with the latus transversum ΑΖ]. Since then 
in the hyperbola [according to Proposition I.21] as sq.ΓΕ is to sq.ΔΒ, so 
pl.ΖΕΑ is to pl.ΖΒΑ, therefore also sq.ΓΕ is greater than sq.ΔΒ. 
 And they are parallel; therefore ΓΔ continued will meet ΑΒ outside the 
section. 
 

[Proposition]  23 
 
 If a straight line situated between two diameters cuts the ellipse, it will, 
when continued, meet each of the diameters outside the section 53. 
 Let there be an ellipse whose diameters are ΑΒ and ΓΔ, and let some 
straight line ΕΖ is situated between the diameters ΑΒ and ΓΔ. 
 I say that ΕΖ, when continued, will meet each of ΑΒ and ΓΔ outside the 
section. 
 [Proof]. For let HE and ΖΘ be dropped as ordinates from Ε and Ζ to ΑΒ, 
and ΕΚ and ΖΛ as ordinates to ΓΔ.Therefore [according to Proposition I.21] as 
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sq.ΕΗ is to sq.ΖΘ, so pl.ΒΗΑ is to pl.ΒΘΑ, and as sq.ΖΛ is to sq.ΕΚ, so pl.ΔΛΓ is 
to pl.ΔΚΓ. 
 And pl.ΒΗΑ is greater than pl.ΒΘΑ for [according to Proposition II.5 of 
Euclid] H is nearer to the midpoint of ΑΒ than Θ, and pl.ΔΛΓ is greater than 
pl.ΔΚΓ  [for Λ is nearer to the midpoint of ΓΔ than Κ]. 
Therefore also sq.ΗΕ is greater than sq.ΖΘ, and sq.ΖΛ is greater than sq.ΕΚ. 
Therefore also ΗΕ is greater than ΖΘ, and ΖΛ is greater than ΕΚ. 
 And ΗΕ is parallel to ΖΘ, and ΖΛ to ΕΚ, therefore [according to Proposi-
tion I.10 and Proposition I.33 of Euclid] ΕΖ continued will meet each of the di-
ameters ΑΒ and ΓΔ outside the section 54. 
 

[Proposition] 24 
 
 If a straight line meeting a parabola or a hyperbola at a point, when con-
tinued both ways falls outside the section, then it will meet the diameter 55. 
 Let there be a parabola or a hyperbola whose diameter is ΑΒ, and let ΓΔΕ 
meet it at Δ, and when continued both ways, let it fall outside the section. 
 I say that it will meet the diameter ΑΒ. 
 [Proof]. For let some point Ζ be taken on the section, and let ΔΖ be 
joined, therefore [according to Proposition I.22] ΔΖ continued will meet the di-
ameter of the section. Let it meet it at Α, and ΓΔΕ is situated between the sec-
tion and ΖΔΑ. And therefore ΓΔΕ continued will meet the diameter outside the 
section. 

 
[Proposition] 25 

 
 If a straight line meeting an ellipse between two diameters and continued 
both ways falls outside the section, it will meet each of the diameters 56. 
 Let there be an ellipse whose diameters are ΑΒ and ΓΔ, and let ΕΖ, some 
straight line between two diameters, meet it at Η, and continued both ways fall 
outside the section. 
 I say that ΕΖ will meet each of ΑΒ and ΓΔ. 
 [Proof]. Let ΗΘ and ΗΚ be dropped as ordinates to ΑΒ and ΓΔ respec-
tively. Since [according to Proposition I.15] ΗΚ is parallel to ΑΒ, and some 
straight line ΗΖ has met ΗΚ, therefore it will also meet ΑΒ. Then likewise ΕΖ will 
also meet ΓΔ. 
 

[Proposition] 26 
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 If in a parabola or a hyperbola a straight line if drawn parallel to the di-
ameter of the section, it will meet the section at one point only 57. 
 Let there first be a parabola whose diameter is ΑΒΓ, and whose latus rec-
tum is ΑΔ, and let ΕΖ be drawn parallel to ΑΒ. 
 I say that ΕΖ continued will meet the section [at one point only]. 
 [Proof]. For let some point Ε be taken on ΕΖ, and from Ε let ΕΗ be drawn 
parallel to an ordinate, and let pl.ΔΑΓ is greater than sq.ΗΕ, and from Γ let [ac-
cording to Proposition I.19] ΓΘ be erected as an ordinate. 
 Therefore [according to Proposition I.11] sq.ΘΓ is equal to pl.ΔΑΓ. 
 But pl.ΔΑΓ is greater than sq.ΕΗ, therefore sq.ΘΓ is greater than sq.ΕΗ, 
therefore ΘΓ is greater than ΕΗ. And they are parallel.  
 Therefore ΕΖ continued cuts ΘΓ, and so it will also meet the section. 
 Let it meet it at Κ. Then I say also that it will meet it at Κ only. 
 [Proof]. For, if possible, let it also meet it at Λ. Since then a straight line 
cuts a parabola at two points, if continued [according to Proposition I.22] it will 
meet the diameter of the section, and this is impossible for it is supposed paral-
lel.  
 Therefore ΕΖ continued meets the section at only one point. 
 Next let the section be a hyperbola, and ΑΒ be the latus transversum of 
the eidos, and ΑΔ be the latus rectum, and let ΔΒ be joined and continued. Then 
with the same construction let ΓΜ be drawn from Γ parallel to ΑΔ. Since then 
pl.ΜΓΑ is greater than ΔΑΓ, sq.ΓΘ is equal to pl.ΜΓΑ, and pl.ΔΑΓ is greater than 
sq.ΗΕ, therefore also sq.ΓΘ is greater than sq.ΗΕ.  And so also ΓΘ is greater 
than ΗΕ, and the same reasons as in the first case will come to pass. 
 

[Proposition] 27 
 
 If a straight line [within the section] cuts the diameter of a parabola, then 
continued both ways it will meet the section 58. 
 Let there be a parabola whose diameter is ΑΒ, and let some straight 
line ΓΔ cut it within the section. 
 I say that ΓΔ continued both ways will meet the section. 
 [Proof]. For let some straight line ΑΕ be drawn from Α parallel to an ordi-
nate, therefore [according to Proposition I.17] ΑΕ will fall outside the section. 
 Then either ΓΔ is parallel to ΑΕ or not. 
 If it is parallel to it, it has been dropped as an ordinate, so that continued 
both ways [according to Proposition I.18] it will meet the section. 
 Next let it not be parallel to ΑΕ, but continued let it meet ΑΕ at Ε. 
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Then it is evident that it meets the section in the side of E for if it meets ΑΕ, 
and a fortiori it cuts the section. 
 I say that if continued the other way, it also meets the section. 
 [Proof]. For let ΜΑ be the latus rectum for the ordinates to the diameter, 
and ΗΖ be an ordinate, and let [according to Propositions VI.11 and VI.17 of 
Euclid] sq.ΑΔ is equal to pl.ΒΑΖ, and let ΒΚ parallel to an ordinate meet ΔΓ at Γ. 
Since pl.ΒΑΖ is equal to sq.ΑΔ, hence as ΑΒ is to ΑΔ, so ΑΔ is to ΑΖ, and there-
fore [according to Proposition V.10 of Euclid] as ΒΔ is to ΔΖ, so ΑΒ is to 
ΑΔ.Therefore also as sq.ΒΔ is to sq.ΔΖ, so sq.ΑΒ is to sq.ΑΔ. 
 But since sq.ΑΔ is equal to pl.ΒΑΖ, hence as ΑΒ is to ΑΖ, so sq.ΑΒ is to 
sq.ΑΔ, and sq.ΒΔ is to sq.ΖΔ. 
 But as sq.ΒΔ is to sq.ΔΖ, so sq.ΒΓ is to sq.ΖΑ, and as ΑΒ is to ΑΖ, so 
pl.ΒΑΜ is to pl.ΖΑΜ. 
 Therefore as sq.ΒΓ is to sq.ΖΗ, so pl.ΒΑΜ is to pl.ΖΑΜ, and correspond-
ingly as sq.ΒΓ is to pl.ΒΑΜ, so sq.ΖΗ is to pl.ΖΑΜ. 
But because of the section [according to Proposition I.11] sq.ΖΗ is equal to 
pl.ΖΑΜ.  Therefore also sq.ΒΓ is equal to pl.ΒΑΜ. 
 But ΑΜ is the latus rectum, and ΒΓ is parallel to an ordinate. Therefore 
[according to the Proposition I.11] the section passes through Γ, and ΓΔ meets 
the section at Γ. 
 

[Proposition] 28 
 
 If a straight line touches one of the opposite hyperbolas, and some point 
is taken within the other hyperbola, and through it a straight line is drawn paral-
lel to the tangent, than continued both ways, it will meet the section 59. 
 Let there be opposite hyperbolas whose diameter is ΑΒ, and let some 
straight line ΓΔ touch the hyperbola Α, and let some point Ε be taken within the 
other hyperbola, and through Ε let ΕΖ be parallel to ΓΔ. 
 I say that ΕΖ continued both ways will meet the section. 
 [Proof]. Since then it has been proved [in Proposition I.24] that ΓΔ con-
tinued will meet the diameter ΑΒ, and ΕΖ is parallel to it, therefore ΕΖ continued 
will meet the diameter. Let it meet it at Η, and let ΑΘ be made equal to ΗΒ, and 
through Θ let ΘΚ be drawn parallel to ΕΖ, and let ΚΛ be dropped as an ordinate, 
and let ΗΜ be made equal to ΛΘ, and let ΜΝ be drawn parallel to an ordinate, 
and let ΗΝ be further continued in the same straight line. And since ΚΛ is paral-
lel to ΜΝ, and ΚΘ to ΗΝ, and ΛΜ is one straight line [with the diameter ΑΒ] the 
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triangle ΚΘΛ is similar to the triangle ΗΜΝ. And ΛΘ is equal to ΗΜ; therefore ΚΛ 
is equal to ΜΝ.and so also sq.ΚΛ is equal to sq.ΜΝ. 
 And since ΛΘ is equal to ΗΜ and ΑΘ is equal to ΒΗ, and ΑΒ is common, 
therefore ΒΛ is equal to ΑΜ, and therefore pl.ΒΛΑ is equal to pl.ΑΜΒ. 
 Therefore as pl.ΒΛΑ is to sq.ΛΚ, so pl.ΑΜΒ is to sq.ΜΝ. 
 And [according to Proposition I.21] as pl.ΒΛΑ is to sq.ΛΚ, so the latus 
transversum is to the latus rectum.  
 Therefore also as pl.ΑΜΒ is to sq.ΜΝ, so latus transversum is to the latus 
rectum.  
 Therefore Ν is on the section. Therefore [according to Proposition I.21] 
ΕΖ continued will meet the section at Ν. 
 Likewise then it could be shown that continued to the other side it will 
meet the section. 

[Proposition] 29 
 
 If in opposite hyperbolas a straight line is drawn through the center to 
meet either of the hyperbolas, then continued it will cut the other hyperbola 60.  
 Let there be opposite hyperbolas whose transverse diameter is ΑΒ, and 
whose center is Γ, and let ΓΔ cut the hyperbola ΑΔ. 
 I say that it will also cut the other hyperbola. 
 [Proof]. For let ΕΔ be dropped as an ordinate, and let ΒΖ be made equal 
to ΑΕ, and let ΖΗ be drawn as an ordinate. And since ΕΑ is equal to ΒΖ, and ΑΒ 
is common, therefore pl.ΒΕΑ is equal to pl.ΒΖΑ. 
 And since [according to Proposition I.21] as pl.ΒΕΑ is to sq.ΔΕ, so the 
latus transversum is to the latus rectum, but also pl. ΒΖΑ is to sq.ΖΗ, so the 
latus transversum is to the latus rectum, therefore also [according to Proposi-
tion I.14] as pl.ΒΕΑ is to sq.ΔΕ, so pl.ΒΖΑ is to sq.ΖΗ. 
 But pl.ΒΕΑ is equal to pl.ΒΖΑ; therefore sq.ΔΕ is equal to sq.ΖΗ. 
 Since then ΕΓ is equal to ΓΖ and ΔΕ is equal to ΖΗ, and ΕΖ is a straight 
line, and ΕΔ is parallel to ΖΗ, therefore [according to Proposition VI.32 of Euclid] 
ΔΗ is also a straight line. And therefore [continued] ΓΔ will also cut the other 
hyperbola. 
 

    [Proposition] 30 
 
 If in an ellipse or in opposite hyperbolas a straight line is drawn in both di-
rections from the center, meeting the section, it will be bisected at the cen-
ter61. 



31 

 Let there be an ellipse or opposite hyperbolas, and their diameter ΑΒ, and 
their center Γ, and through Γ let some straight line ΔΓΕ be drawn. 
 I say that ΓΔ is equal to ΓΕ. 
 [Proof]. For let ΔΖ and ΕΗ be drawn as ordinates. And since [according to 
Proposition I.21] as pl.ΒΖΑ is to sq.ΖΔ, so the latus transversum is to the latus 
rectum, but also as pl.ΑΗΒ is to sq.ΗΕ, so the latus transversum is to the latus 
rectum, therefore also [according to Proposition V.11 of Euclid] as pl.ΒΖΑ is to 
sq.ΖΔ, so pl.ΑΗΒ is to sq.ΗΕ. 
 And alternately as pl.ΒΖΑ is to pl.ΑΗΒ, so sq.ΖΔ is to sq.ΗΕ. 
 But [according to Propositions V.16, VI.4 and VI.22 of Euclid] as sq.ΖΔ is 
to sq.ΗΕ, so sq.ΖΓ is to sq.ΓΗ, therefore alternately as pl.ΒΖΑ is to sq.ΖΓ, so 
pl.ΑΗΒ is to sq.ΓΗ. 
 Therefore also [according to Propositions II 5 and II.6 of Euclid] compo-
nendo in the case of the ellipse and inversely and convertendo 62 in the case of 
the opposite hyperbolas, as sq.ΑΓ is to sq.ΓΖ, so sq.ΒΓ is to sq.ΓΗ, and alter-
nately [as sq.ΑΓ is to sq.ΒΓ, so sq.ΓΖ is to sq.ΓΗ]. But sq.ΓΒ is equal to sq.ΑΓ, 
therefore also sq.ΓΗ is equal to sq.ΓΖ, therefore ΓΗ is equal to ΓΖ.  
         And ΔΖ and ΗΕ are parallel; therefore also ΔΓ is equal to ΓΕ. 
 

[Proposition] 31 
 
 If on the latus transversum of the eidos of a hyperbola some point be 
taken cutting off from the vertex of the section not less than half of the latus 
transversum of the eidos, and a straight line be drawn from it to meet to sec-
tion, then when further continued it will fall within the section on the near side 
of the section 63. 
 Let there be a hyperbola whose diameter is ΑΒ, and let some point Γ on 
the diameter be taken Cutting off ΓΒ not less than half of ΑΒ, and let some 
straight line ΓΔ be drawn to meet the section. 
 I say that ΓΔ continued will fall within the section. 
 [Proof]. For, if possible, let it fall outside the section as ΓΔΕ, and from Ε, 
a point at random, let ΕΗ be dropped as an ordinate, also ΔΘ [let be dropped as 
an ordinate]; and first let ΑΒ be equal to ΓΒ. 
 And since [according to Propositions V.8 and VI.22 of Euclid] the ratio 
sq.ΕΗ to sq.ΔΘ is greater than the ratio sq.ΖΗ to sq.ΔΘ, but as sq.ΕΗ is to 
sq.ΔΘ, so sq.ΓΗ is to sq.ΓΘ because ΕΗ is parallel to ΔΘ, and as sq.ΖΗ is to 
sq.ΔΘ, so pl.ΑΗΒ is tO pl.ΑΘΒ because for the section [according to Proposition 
I.21], therefore the ratio sq.ΓΗ to sq.ΓΘ is greater than the ratio pl.ΑΗΒ to 
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pl.ΑΘΒ. Therefore alternately the ratio sq.ΓΘ to pl.ΑΗΒ is greater than the ratio 
sq.ΓΘ to pl.ΑΘΒ. 
 Therefore separando [according to Propositions II.6 and V.17 of Euclid] 
the ratio sq.ΓΒ to pl.ΑΗΒ is greater than the ratio sq.ΓΒ to pl.ΑΘΒ, and this is 
impossible [according to Proposition V.8 of Euclid]. Therefore ΓΔΕ will not fall 
outside the section, and it falls inside. 
 And for this reason the straight line from some of the points on ΑΓ will a 
fortiori fall inside, since it will also fall inside ΓΔ. 
 

[Proposition] 32 
 
 If a straight line is drawn through the vertex of a section of a cone parallel 
to an ordinate, then it touches the section, and another straight line will not fall 
into the space between the conic section and this straight line 64. 
 Let there be a section of a cone, first the so-called parabola whose di-
ameter is ΑΒ [and whose vertex is Α], and from Α let ΑΓ be drawn parallel to an 
ordinate. 
 Now [in the Proposition I.17] it has been shown that it falls outside the 
section. 
 Then I say that also another straight line will not fall into the space be-
tween ΑΓ and the section. 
 [Proof]. For, if possible, let it fall inside as ΑΔ, and let some point Δ be 
taken on it at random, and let ΔΕ be dropped as the ordinate, and let ΑΖ be the 
latus rectum for the ordinates to ΑΒ. And since [according to Propositions V.8 
and VI.22 of Euclid] the ratio sq.ΔΕ to sq.ΕΑ is greater than the ratio sq.ΗΕ to 
sq.ΕΑ, and [according to Proposition I.11] sq.ΗΕ is equal to pl.ΖΑΕ, therefore 
also the ratio sq.ΔΕ to sq.ΕΑ is greater than the ratio pl.ΖΑΕ to sq.ΕΑ, or is 
greater than the ratio ΖΑ to ΕΑ. 
 Let then it be contrived that as sq.ΔΕ is to sq.ΕΑ, so ΖΑ is to ΘΑ, and 
through Θ let ΘΛΚ be drawn parallel to ΕΔ. 
 Since then as sq.ΔΕ is to sq.ΕΑ, so ΖΑ is to ΑΘ, and pl.ΖΑΘ is to 
sq.ΑΘ and [according to Propositions VI.4 and Vi.22 of Euclid] as sq.ΔΕ is to 
sq.ΕΑ, so sq.ΚΘ is to sq.ΘΑ, and [according to Proposition I.11] sq. ΘΛ is equal 
to pl.ΖΑΘ, therefore also as sq.ΚΘ is to sq.ΘΑ, so sq.ΛΘ is to sq.ΘΑ. 
 Therefore ΚΘ is equal to ΘΛ, and this is impossible. Therefore another 
straight line will not fall into the space between ΑΓ and the section. 
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 Next let the section be a hyperbola or an ellipse or the circumference of a 
circle whose diameter is ΑΒ, and whose latus rectum is ΑΖ, and let ΒΖ be joined 
and continued, and from Α let ΑΓ be drawn parallel to an ordinate. 
 Now [in Proposition I.17] it has been shown that it falls outside the sec-
tion. 
 Then I say that also another straight line will not fall into the space be-
tween ΑΓ and the section. 
 [Proof], For, if possible, let it fall inside as ΑΔ, and let some point Δ be 
taken on it at random, and let ΔΕ be dropped as an ordinate, and let ΕΜ be 
drawn parallel to ΑΖ. 
 And since [according to Propositions I.12 and I.13] sq.ΗΕ is equal to 
pl.ΑΕΜ, let it be contrived that pl.ΑΕΝ is equal to sq.ΔΕ, and let ΑΝ cut ΖΜ at Ξ, 
and through Ξ let ΞΘ be drawn parallel to ΖΑ, and through Θ λετ ΘΛΚ parallel 
to ΑΓ. Since then sq.ΔΕ is equal to pl.ΑΕΝ, hence as ΝΕ is to ΕΔ, so ΔΕ is to ΕΑ, 
and therefore [according to Propositions V.11 and VI.22 and the porism to 
Proposition VI.19 of Euclid] as ΝΕ is to ΕΑ, so sq.ΔΕ is to sq.ΕΑ. 
 But as ΝΕ is to ΕΑ, so ΞΘ is to ΘΑ, and as sq.ΔΕ is to sq.ΕΑ, so sq.ΚΘ is 
to sq.ΘΑ. Therefore as ΞΘ is to ΘΑ, so sq.ΚΘ is to sq.ΘΑ, therefore [according 
to the porism to Proposition VI.19 of Euclid] as ΞΘ is to ΘΚ, so ΚΘ is to ΘΑ. 
 Therefore sq.ΚΘ is equal to pl.ΑΘΞ, but also because for the section [ac-
cording to Propositions I.12 and I.13] sq.ΛΘ is equal to pl.ΑΘΞ, therefore sq.ΚΘ 
is equal to sq.ΘΛ, and this is impossible. Therefore another straight line will not 
fall into the space between ΑΓ and the section. 
 

[Proposition] 33 
 
 If on a parabola some point is taken, and from it an ordinate is drawn to 
the diameter, and to the straight line cut off by it on the diameter from the ver-
tex a straight line in the same straight line from its extremity is made equal, 
then the straight line joined from the point thus resulting to the point taken will 
touch the section 65. 
 Let there be a parabola whose diameter is ΑΒ, [and whose vertex is Ε], 
and let ΓΔ be dropped as an ordinate, and let ΑΕ be made equal to ΕΔ, and let 
ΑΓ be joined. 
 I say that ΑΓ continued will fall outside the section. 
 [Proof]. For, if possible, let it fall within as ΓΖ, and let ΗΒ be dropped as 
an ordinate. And since the ratio sq.ΒΗ to sq.ΓΔ is greater than sq.ΖΒ to sq.ΓΔ, 
but as sq.ΖΒ is to sq.ΓΔ, so sq.ΒΑ is to sq. ΑΔ, and [according to Proposition 
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I.20] as sq.ΒΗ is to sq.ΓΔ, so ΒΕ is to ΔΕ, therefore the ratio ΒΕ to ΔΕ is greater 
than sq.ΒΑ to sq.ΑΔ. 
 But as ΒΕ is to ΔΕ, so quadruple pl.ΒΕΑ is to quadruple pl.ΔΕΑ, therefore 
also the ratio quadruple pl.ΒΕΑ to quadruple pl.ΔΕΑ is greater than sq.ΑΒ to 
sq.ΑΔ. 

Therefore, alternately the ratio quadruple pl.ΒΕΑ to sq.ΑΒ is greater than 
the ratio quadruple pl.ΔΕΑ to sq.ΑΔ, and this is impossible for since ΑΕ is equal 
to ΔΕ, hence quadruple pl.ΒΕΑ is less than sq.ΑΒ for [according to Proposition 
II.5 of Euclid], Ε is not the midpoint of ΑΒ.Therefore tΑΓ does not fall within the 
section, therefore it touches it. 
 

[Proposition] 34 
   
 If on a hyperbola or an ellipse or the circumference of a circle some point 
is taken, and if from it a straight line is dropped as an ordinate to the diameter, 
and if the straight lines which the ordinate cuts off from the ends of the latus 
transversum of the eidos have to each other a ratio which other segments of 
the latus transversum have to each other, so that the segments from the ver-
tex are homologous 66, then the straight line joining the point taken on the latus 
transversum and that taken on the section will touch the section 67. 
 Let there be a hyperbola or an ellipse or the circumference of a circle 
whose diameter is ΑΒ, and let some point Γ be taken on the section, and from Γ 
let ΓΔ be drawn as an ordinate, and let it be contrived that as ΒΔ is to ΔΑ, so ΒΕ 
is to ΕΑ, and let ΕΓ be joined. 
 I say that ΓΕ touches the section. 
 [Proof]. For, if possible, let it cut it, as ΕΓΖ, and let some point Ζ be taken 
on it, and let ΗΖΘ be dropped as an ordinate, and let ΑΛ and ΒΚ be drawn 
through Α and Β parallel to ΕΓ, and let ΔΓ, ΒΓ, and ΗΓ be joined and continued 
to Κ, Ξ, and Μ. And since as ΒΔ it to ΔΑ, so ΒΕ is to ΕΑ, but [according to 
Proposition VI.4 of Euclid] as ΒΔ is to ΔΑ, so ΒΚ is to ΑΝ, and as ΒΕ is to ΑΕ, so 
ΒΓ is to ΓΚ, and ΒΚ is to ΞΝ, therefore as ΒΚ is to ΑΝ, so ΒΚ is to ΞΝ, therefore 
ΑΝ is equal to ΝΞ. 
 Therefore [according to Propositions II.5 and VI.27 of Euclid] pl.ΑΝΞ is 
greater than pl.ΑΟΞ. 
 Therefore the ratio ΝΞ to ΞΟ is greater than the ratio ΟΑ to ΑΝ. 
 But [according to Proposition VI.4 of Euclid] as ΝΞ to ΞΟ, so ΚΒ is to ΒΜ, 
therefore the ratio ΚΒ to ΒΜ is greater than the ratio ΟΑ to ΑΝ. 
 Therefore pl.ΚΒ, ΑΝ is greater than pl.ΒΜ,ΟΑ. 
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 And so [according to Proposition V.8 of Euclid] the ratio pl.ΚΒ,ΑΝ to 
sq.ΓΕ is greater than the ratio pl.ΒΜ,ΟΑ to sq.ΓΕ. 
But as pl.ΚΒ,ΑΝ is to sq.ΓΕ, so pl.ΒΔΑ is to sq.ΔΕ because the triangles 
ΒΚΔ, ΕΓΔ, and ΝΑΔ are similar, and as pl.ΒΜ,ΟΑ is to sq.ΓΕ, so pl.ΒΗΑ is to 
sq.ΗΕ, therefore the ratio pl.ΒΔΑ to sq.ΔΕ is greater than the ratio pl.ΒΗΑ to 
sq.ΗΕ, therefore alternately the ratio ΒΔΑ to pl.ΒΗΑ is greater than the ratio 
sq.ΔΕ to sq.ΗΕ. 
 But [according to Proposition I.21] as pl.ΒΔΑ is to pl.ΑΗΒ, so sq.ΓΔ is to 
sq.ΗΘ and [according to Propositions VI.4 and VI.22 of Euclid] as sq.ΔΕ is to 
sq.ΕΑ, so sq.ΓΔ is to sq.ΖΗ, therefore also the ratio sq.ΓΔ to sq.ΘΗ is greater 
than the ratio sq.ΓΔ to sq.ΖΗ. 
 Therefore [according to Proposition V.10 of Euclid] ΘΗ is less than 
ΖΗ, and this is impossible. Therefore ΕΓ does not cut the section. Therefore, it 
touches it 68-69. 
 

[Proposition] 35 
 
 If a straight line touching a parabola, meets the diameter outside the sec-
tion, the straight line drawn from the point of contact as an ordinate to the di-
ameter will cut off on the diameter beginning from the vertex of the section a 
straight line equal to the straight line between the vertex and the [diameter’s 
intersection with the] tangent, and not straight line will fall into the space be-
tween the tangent and the section 70. 
 Let there be a parabola whose diameter is ΑΒ, [whose vertex is Η], and let 
ΒΓ be erected as an ordinate, and let ΑΓ be tangent to the section. 
 I say that ΑΗ is equal to ΗΒ. 
 [Proof]. For, if possible, let it be unequal to it, and let ΗΕ be made equal 
to ΑΗ, and let ΕΖ be upright as an ordinate, and let ΑΖ be joined. Therefore [ac-
cording to Proposition I.33] ΑΖ continued will meet ΑΓ, and this is impossible for 
two straight lines will have the same ends. Therefore ΑΗ is not unequal to ΗΒ; 
therefore it is equal to it. 
 Then I say that no straight line will fall into the space between ΑΓ and the 
section. 
 [Proof]. For, if possible, let ΓΔ fall between, and let ΗΕ be made equal to 
ΗΔ, and let ΕΖ be erected as an ordinate. Therefore [according to Proposition 
I.33] the straight line joined from Δ to Ζ touches the section, therefore contin-
ued it will fall outside it. And so it will meet ΔΓ, and two straight lines will have 
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the same ends, and this is impossible. Therefore a straight line will not fall into 
the space between the section and ΑΓ. 
 

[Proposition] 36 
 
 If some straight line meeting the latus transversum of the eidos touches a 
hyperbola or an ellipse or the circumference of a circle, and if a straight line 
dropped from the point of contact as an ordinate to the diameter, then as the 
straight line cut off by the tangent from the end of the latus transversum is to 
the straight line cut off by the tangent from the other end of the latus trans-
versum, so the straight line will cut off by the ordinate from the end of the latus 
transversum be to the straight line cut off by the ordinate from the other end 
of the latus transversum in such a way that the homologous  straight lines  are  
in continuous correspondence, and another straight line will not fall into the 
space between the tangent and the section of the cone 71. 
 Let there be a hyperbola or an ellipse or the circumference of a circle 
whose diameter is ΑΒ, and let ΓΔ be tangent, and let ΓΕ be dropped as an ordi-
nate. 
 I say that as BE is to ΕΑ, so ΒΔ is to ΔΑ. 
 [Proof]. For if it is not, let it be as ΒΔ is to ΔΑ, so ΒΗ is to ΗΑ, and let ΗΖ 
be erected as an ordinate, therefore the straight line joined from Δ to Ζ [accord-
ing to Proposition I.34] will touch the section, therefore continued it will meet 
ΓΔ. Therefore two straight lines will have the same ends, and this is impossible. 
  I say that no straight line will fall between the section and ΓΔ.  
 [Proof]. For, if possible, let it fall between, as ΓΘ, and let it be contrived 
that as ΒΘ is to ΘΑ, so ΒΑ to ΗΑ, and let ΗΖ be erected as an ordinate, there-
fore the straight line joined from Θ to Ζ, when continued [according to Proposi-
tion I.34] will meet ΘΓ. Therefore two straight lines will have the same ends, 
and this is impossible. Therefore a straight line will not fall into the space be-
tween the section and ΓΔ. 
 

  [Proposition] 37 
 
 If a straight line touching a hyperbola or an ellipse or the circumference of 
a circle meets the diameter, and from the point of contact to the diameter a 
straight line is dropped as an ordinate, then the straight line cut off by the ordi-
nate from the center of the section with the straight line cut off by the tangent 
from the center of the section will contain an area equal to the square on the 
radius of the section, and with the straight line between the ordinate and the 
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tangent will contain an area having the ratio to the square on the ordinate which 
the latus transversum has to the latus rectum 72. 
 Let there be a hyperbola or an ellipse or the circumference of a circle 
whose diameter is ΑΒ and let ΓΔ be drawn tangent, and let ΓΕ be dropped as an 
ordinate, and let Ζ be the center. 
 I say that pl.ΔΖΕ is equal to sq.ΖΒ, and as pl.ΔΕΖ is to sq.ΕΓ. so the latus 
transversum is to the latus rectum. 
 [Proof]. For since ΓΔ touches the section, and ΓΕ has been dropped as an 
ordinate, hence [according to Proposition I.36] as ΑΔ is to ΔΒ, so ΑΕ is to ΕΒ. 
Therefore componendo as the sum of ΑΔ and ΔΒ is to ΔΒ, so the sum of 
ΑΕ and ΕΒ is to ΕΒ. 
 And [according to Proposition V.15 of Euclid] let the halves of the ante-
cedents be taken. In the case of the hyperbola we shall say: but half of the sum 
of ΑΕ and ΕΒ is equal to ΖΕ, and half of ΑΒ is equal to ΖΒ, therefore as ΖΕ is to 
ΕΒ, so ΖΒ is to ΒΔ. Therefore convertendo as ΖΕ is to ΖΒ, so ΖΒ is to ΖΔ, there-
fore pl.ΕΖΔ is equal to sq.ΖΒ. 
 And since as ΖΕ is to ΕΒ, so ΕΒ is to ΒΔ, and ΑΖ is to ΒΔ, and alternately 
as ΑΖ is to ΖΕ, so ΔΒ is to ΒΕ, and componendo as ΑΕ is to ΕΖ, so ΔΕ is to ΕΒ 
and so, pl.ΑΕΒ is equal to pl.ΖΕΔ. 
 But [according to Proposition I.21] as pl.ΑΕΒ is to sq.ΓΕ, so the latus 
transversum is to the latus rectum, therefore also pl.ΖΕΔ is to sq.ΓΕ, so the 
latus transversum is to the latus rectum. 
 And in the case of the ellipse and of the circle we shall say: but half of the 
sum of AD and ΔΒ is equal to ΔΖ and half of ΑΒ is equal to ΖΒ, therefore as ΖΔ is 
to ΔΒ, so ΖΒ is to ΒΕ. Therefore convertendo as ΔΖ is to ΖΒ, so ΒΖ is to ΖΕ. 
Therefore pl.ΔΖΕ is equal to sq.ΒΖ. 
 But [according to Proposition II.3 of Euclid] pl.ΔΖΕ is equal to the sum of 
pl.ΔΕΖ and sq.ΖΕ and [according to Proposition II.5 of Euclid] sq.ΒΖ is equal to 
the sum pl.ΑΕΒ and sq.ΖΕ. 
       Let the common sq.ΕΖ be subtracted, therefore pl.ΔΕΖ is equal to pl.ΑΕΒ. 
Therefore as pl.ΔΕΖ is to sq.ΓΕ, so pl.ΑΕΒ is to sq.ΓΕ. 
 But [according to Proposition I.21] as pl.ΑΕΒ is to sq.ΓΕ, so the latus 
transversum is to the latus rectum. Therefore as pl.ΔΕΖ is to sq.ΓΕ, so the latus 
transversum is to the latus rectum 73-80. 
 

[Proposition] 38 
 



38 

If a straight line touching a hyperbola or an ellipse or the circumference of 
a circle meets the second diameter and if from the point of contact a straight 
line is dropped to the same diameter parallel to the other diameter then the 
straight line cut off from the center of the section by the dropped straight line, 
together with the straight line cut off [on the second diameter] by the tangent 
from the center of the section will contain an area equal to the square on the 
half of the second diameter and together with the straight line [on the second 
diameter] between the dropped straight line and the tangent will contain an 
area having a ratio to the square on the dropped straight line which the latus 
rectum of the eidos has to the latus transversum 81. 
 Let there be a hyperbola or an ellipse or the circumference of a circle 
whose diameter is ΑΗΒ, and whose second diameter is ΓΗΔ, and let ΕΛΖ meet-
ing ΓΔ at Ζ be a tangent to the section, and let the ΘΕ be parallel to ΑΒ. 
 I say that pl.ΖΗΘ is equal to sq.ΗΓ and as pl.ΗΘΖ is to sq.ΘΕ, so the latus 
rectum is to the latus transversum. 
 [Proof]. Let ME be drawn as an ordinate, therefore [according to Proposi-
tion I.37] as pl.ΗΜΛ is to sq.ΜΕ, so the latus transversum is to the latus rec-
tum. 
 But [according to Definition 11] as the latus transversum ΒΑ is to ΓΔ,  σο 
ΓΔ is to the latus rectum and therefore [according to the porism to Proposition 
VI.19 of Euclid] as the latus transversum is to the latus rectum, so sq. BA is to 
sq.ΓΔ, and as the quarters of them, that is as the latus transversum is to the 
latus rectum, so sq.ΗΑ, is to sq.ΗΓ, therefore also as pl.ΗΜΛ is to sq.ΜΕ, so 
sq.ΗΑ is to sq.ΗΓ.  
 But the ratio pl.ΗΜΛ to sq.ΜΕ is compounded of [the ratios] ΗΜ to ΜΕ 
and ΛΜ to ΜΕ or the ratio pl.ΗΜΛ to sq.ΜΕ is compounded of [the ratios] ΗΜ 
to ΗΘ and ΛΜ to ΜΕ. Therefore inversely as sq.ΓΗ is to sq.ΗΑ, so ΕΜ is to ΜΗ 
or the ratio compounded of [the ratios] ΘΗ to ΗΜ and ΕΜ to ΜΛ or the ratio ΖΗ 
to ΗΛ. 
 Therefore, the ratio sq.ΗΓ to sq.ΗΑ is compounded of [the ratios] ΘΗ  
to ΗΜ and ΖΓ to ΗΛ which is the same as the ratio pl.ΖΗΘ to pl.ΜΗΛ. 
Therefore as pl.ΖΗΘ is to pl.ΜΗΛ, so sq.ΓΗ is to sq.ΗΑ. And alternately 
[as pl.ΖΗΘ is to sq.ΓΗ, so pl.ΜΗΛ is to sq.ΗΑ.]. 
 But [according to Proposition I.37] pl.ΜΗΛ is equal to sq.ΗΑ, therefore 
also pl.ΖΗΘ is equal to sq.ΓΗ. 
 Again since [according to Proposition I.37] as the latus rectum is to 
the latus transversum, so sq.ΕΜ is to pl.ΗΜΛ, and the ratio sq.ΕΜ to pl.ΗΜΛ 
is compounded of [the ratios] ΕΜ to ΗΜ and ΕΜ to ΜΛ, or the ratio sq.ΕΜ to 
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pl.ΗΜΛ is compounded of [the ratios] ΘΗ to ΘΕ and ΖΗ to ΗΛ or ΖΘ to 
ΘΕ, ωηιχη is the same as pl.ΖΘΗ to sq.ΘΕ. Therefore as pl.ΖΘΗ is to sq.ΘΕ, so 
the latus rectum is to the latus transversum. 
 

[Porism]  1 
                                                      

Under the same suppositions [on the hyperbola] we shall prove that as each 
straight line situated [on the second diameter] between the tangent and the 
end of the [second] diameter from the ordinate is to the straight line situated 
between the tangent and the other end of the [second] diameter, so the 
straight line situated between the other end of the [second] diameter and the 
ordinate to the straight line situated between the first end and the ordinate 82. 
 Since pl.ΖΗΘ is equal to sq.ΗΓ, that is pl.ΓΗΔ because ΓΗ is equal to ΗΔ, 
pl.ΖΗΘ is equal to pl.ΓΗΔ.  Therefore as ΗΓ is to ΗΘ, so ΖΗ is to ΗΔ, and 
separando and convertendo as ΗΓ is to ΓΘ ,so ΗΖ is to ΖΔ. If the antecedents 
are doubled and separando we obtain that as ΔΘ is to ΓΘ, so ΓΖ is to ΖΔ, what  
was to prove 83. 

[Porism]  2  
 

 From the said it is evident that  the straight line ΕΖ is tangent to the sec-
tion because pl.ΖΗΘ is equal to sq.ΗΓ. Hence  we can prove that as pl.ΗΘΖ 
is to sq.ΘΕ , so the ratio [of the latus rectum to the latus transversum] that 
was proved [in Proposition I.38]. 
 

[Proposition] 39 
 

 If a straight line touching a hyperbola or an ellipse or the circumference of 
a circle meets the diameter and if from the point of contact a straight line is 
dropped as an ordinate to the diameter, then whichever of the two straight lines 
is taken, of which one is the straight line between the [intersection of the] ordi-
nate [with the diameter] and the center of the section, and the other is be-
tween [the intersection of] the ordinate and the tangent [with the diameter] 
the ordinate will have to it the ratio compounded of the ratio of the other of the 
two straight lines to the ordinate and of the ratio of the latus rectum of the ei-
dos to the latus transversum84. 
 Let there be a hyperbola or an ellipse or the circumference of a circle 
whose diameter is ΑΒ, and let the center of it be Ζ, and let ΓΔ be drawn tangent 
to the section, and ΓΕ be dropped as an ordinate. 
 I say that the ratio ΓΕ to ΖΕ is compounded of [the ratios] the latus 
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rectum to the latus transversum and ΕΔ to ΕΓ and the ratio ΓΕ to ΕΔ is 
compounded of [the ratios] the latus rectum to the latus transversum and ΖΕ 
to ΕΓ. 
 [Proof]. For let pl.ΖΕΔ is equal to pl.ΕΓ,Η and since [according to Proposi-
tion I.37] as pl.ΖΕΔ is to sq.ΓΕ, so the latus transversum is to the 
latus rectum and pl.ΖΕΔ is equal to pl.ΓΕ,Η, therefore as pl.ΓΕ,Η is to sq.ΓΕ, 
so H is to ΓΕ and the latus transversum  is to the latus rectum. 
 And since pl.ΖΕΔ is equal to pl.ΓΕ,Η, hence as ΖΕ is to ΕΓ, so Η is to ΕΔ. 
And since the ratio ΓΕ to ΕΔ is compounded of [the ratios] ΓΕ to Η and Η to ΕΔ, 
but as ΓΕ is to H, so the latus rectum is to the latus transversum, 
therefore the ratio ΓΕ to ΕΔ is compounded of [the ratios] the latus rectum 
to the latus transversum and ΖΕ to ΕΓ. 
 

[Proposition] 40 
 

 If a straight line touching a hyperbola or an ellipse or the circumference 
of a circle meets the second diameter, and if from the point of contact a 
straight line is dropped to the same diameter parallel to the other diameter, 
then whichever of two straight lines is taken [along the second  diameter], of 
which one is the straight line between the dropped straight line and the center 
of the section, and the other is between the dropped straight line and the tan-
gent, then the dropped straight line will have to  one of two straight lines the 
ratio compounded of the ratio of the latus transversum to the latus rectum and 
of the ratio of the other of two straight lines to the dropped straight line85. 
 Let there be a hyperbola or an ellipse or the circumference of a circle 
ΑΒ, and its diameter ΒΖΓ, and its second diameter ΔΖΕ, and let ΘΛΑ be drawn 
tangent, and ΑΗ be drawn parallel to ΒΓ. 
 I say that the ratio ΑΗ to one of ΖΗ,ΘΗ is compounded of the ratio the 
latus transversum to the latus rectum and the ratio the other of ΖΗ, ΗΘ to ΗΑ 
 [Proof] . Let pl.ΗΑ,Κ is equal to pl.ΘΗ,ΗΖ. And since [according to Propo-
sition I.38] as the latus rectum is to the latus transversum, so pl.ΘΗ,ΗΖ is to 
sq.ΗΑ and pl.ΗΑ,Κ is equal to pl.ΘΗ,ΗΖ, therefore also as pl.ΗΑ,Κ is to sq.ΗΑ, so 
Κ is to ΑΗ and the latus rectum is to the latus transversum. 

And since the ratio ΑΗ to ΗΖ is compounded of [the ratios] ΑΗ to Κ and 
Κ to ΗΖ , but as ΑΗ is to Κ, so the latus transversum is to the latus rectum, and 
as Κ is to ΗΖ, so ΘΗ is to ΗΑ because pl.ΘΗΖ is equal to pl.ΑΗ,Κ, therefore the 
ratio ΑΗ to ΗΖ is compounded of [the ratios] the latus transversum to the latus 
rectum and ΗΘ to ΗΑ. 
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[Proposition] 41 
 

 If in a hyperbola or an ellipse or the circumference of a circle a  
straight line is dropped as an ordinate to the diameter, and if equiangular paral-
lelogrammic figures are described both on the ordinate and on the 
radius, and if the ordinate side has to the remaining side of the figure the 
ratio compounded of the ratio of the radius to the remaining side of its 
figure, and of the ratio of the latus rectum of the eidos of the section to the 
latus transversum, then the figure on the straight line between the center 
and  the ordinate, similar to the figure on the radius, is in the case of the hyper-
bola greater than the figure on the ordinate by the figure on the radius, 
and in the case of the ellipse and the circumference of a circle together with the 
figure on the ordinate is equal to the figure on the radius 86. 
 Let there be a hyperbola or an ellipse or the circumference of a circle 
whose diameter is ΑΒ, and center Ε, and let ΓΔ be dropped as an ordinate, and 
on ΕΑ and ΓΔ let the equiangular figures ΑΖ and ΔΗ be described, and let the 
ratio ΓΔ to ΓΗ is compounded of [the ratios] ΑΕ to ΕΖ and the latus rectum to 
the latus transversum. 
 I say that with the figure on ΕΔ similar to  [the plane]ΑΖ in the case on 
the hyperbola the figure  on ΕΔ  is equal to the sum of [the planes] ΑΖ and ΗΔ, 
and in the case of the ellipse and the circle the sum of the figure on  ΕΔ and  
[the plane] ΗΔ is equal to [the plane] ΑΖ. 
 [Proof]. For let it be contrived that as the latus rectum is to the latus 
transversum, so ΔΓ is to ΓΘ. 
 And since as ΔΓ is to ΓΘ , so the latus rectum is to the latus transversum 
, but as ΔΓ is to ΓΘ , so sq.ΔΓ is to pl.ΔΓΘ , and [according to Proposition I.21] 
as the latus rectum is to the latus transversum, so sq.ΔΓ is to pl.ΒΔΑ, therefore 
pl.ΒΔΑ is equal to pl.ΔΓΘ . 
 And since the ratio ΔΓ to ΓΗ is compounded of [the ratios]ΑΕ to ΕΖ and 
the latus rectum to the latus transversum , or the ratio ΔΓ to  ΓΗ is  com-
pounded of [the ratios] ΑΕ to ΕΖ and ΔΓ to ΓΘ, and further the ratio ΔΓ to ΓΗ is 
compounded of [the ratios] ΔΓ to ΓΘ and ΓΘ to ΓΗ, therefore the ratio com-
pounded of[the ratios] ΑΕ to ΕΖ and ΔΓ to ΓΘ is the same, as the ratio com-
pounded of [the ratios] ΔΓ to ΓΘ and ΓΘ to ΓΗ. 
 Let the common ratio ΔΓ to ΓΘ be taken away, therefore as ΑΕ is to  
ΕΖ, so ΓΘ is to ΓΗ. 
 But as ΘΓ is to ΓΗ, so pl.ΘΓΔ is to pl.ΗΓΔ ,and as ΑΕ is to ΕΖ, so sq.ΑΕ is 
to pl.ΑΕΖ, therefore as pl.ΘΓΔ is to pl.ΗΓΔ , so sq.ΑΕ is to pl.ΑΕΖ. 
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 And it has been shown that pl.ΘΓΔ is equal to pl.ΒΔΑ, therefore as 
pl.ΒΔΑ is to pl.ΗΓΔ, so sq.ΑΕ is to pl.ΑΕΖ, and alternately as pl.ΒΔΑ is to sq.ΑΕ, 
so pl.ΗΓΔ is to pl.ΑΕΖ. 
 And as pl.ΗΓΔ is to pl.ΑΕΖ, so [the plane] ΔΗ is to [the plane] ΖΑ for they 
are equiangular and [according to Proposition VI.23 of Euclid] have to one an-
other the ratio compounded of their sides, ΗΓ to ΑΕ and ΓΔ to ΕΖ, and there-
fore as pl.ΒΔΑ is to sq.ΕΑ, so [the plane] ΔΗ is to [the plane] ΖΑ. 
 Moreover in the case of the hyperbola we are to say : componendo as the 
sum of pl.ΒΔΑ and sq.ΑΕ is to sq.ΑΕ, so the sum of [the planes] ΗΔ and ΑΖ is to 
[the plane] ΑΖ or [according to Proposition II.6 of Euclid] as sq.ΔΕ is to sq.ΕΑ, 
so the sum of [the planes] ΗΔ and ΑΖ is to [the plane] ΑΖ. And as sq.ΔΕ is to 
sq.ΕΑ, so [according to the porism to Proposition VI,29 of Euclid] the figure de-
scribed on ΕΔ is similar and similarly situated to [the plane] ΑΖ, to [the  plane] 
ΑΖ, therefore with the figure on ΕΔ similar to [the plane] ΑΖ, as the sum of [the 
planes] ΗΔ and ΑΖ is to [the plane] ΑΖ, so the figure on ΕΔ is to [the plane] ΑΖ. 
Therefore the figure on ΕΔ is equal to the sum of [the planes] ΗΔ and ΑΖ, the 
figure on ΕΔ being similar to [the plane] ΑΖ. And in the case of the ellipse and of 
the circumference of a circle we shall say : since then [according to Proposition 
V.19 of Euclid] as whole sq.ΑΕ is to whole [the plane] ΑΖ, so pl.ΑΔΒ subtracted 
is to [the plane] ΔΗ subtracted, also remainder is to remainder as whole to 
whole. 
 And [according to Proposition II.5 of Euclid] sq.ΑΕ without pl.ΒΔΑ is equal 
to sq.ΔΕ, therefore as sq.ΔΕ is to [the plane] ΑΖ without [the plane] ΔΗ, so 
sq.ΑΕ is to [the plane] ΑΖ. But [according to the porism to Proposition VI,20 of 
Euclid] as sq.ΑΕ is to [the plane] ΑΖ, so sq.ΔΕ is to the figure on ΔΕ, the figure 
on ΔΕ being similar to [the plane] ΑΖ. Therefore as sq.ΔΕ is to [the plane] ΑΖ 
without [the plane] ΔΗ, so sq.ΔΕ is to the figure on the Ε. Therefore the figure 
on ΔΕ being similar to [the plane] ΑΖ, the figure on ΔΕ is equal to [the plane] ΑΖ 
without [the plane] ΔΗ. 
 Therefore the sum of the figure on ΔΕ and [the plane] ΔΗ is equal to [the 
plane] ΑΖ. 

[Proposition] 42 
 

 If a straight line touching a parabola meets the diameter, and if from the 
point of contact a straight line is dropped as an ordinate to the diameter, and if 
some point is taken on the section, two straight lines are dropped to the diame-
ter, one of them parallel to the tangent, and the other parallel to the straight 
line dropped from the point of contact, then the triangle resulting from them 
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[that is from the diameter and the two straight lines dropped from the point at 
random] is equal to the parallelogram under the straight line dropped of the 
point of contact and the straight line cut off by the parallel from the vertex of 
the section 87 . 
 Let there be a parabola whose diameter is ΑΒ, and let ΑΓ be drawn tan-
gent to the section, and let ΓΘ be dropped as an ordinate and from some point 
at random let ΔΖ be dropped as an ordinate and through Δ let ΔΕ be drawn par-
allel to  ΑΓ, and through Γ let ΓΗ  be drawn parallel to ΒΖ and through B let ΒΗ  
be drawn parallel to ΘΓ. 
 I say that the triangle ΔΕΖ is equal to the parallelogram ΗΖ. 
 [Proof]. For, since ΑΓ touches the section, and ΓΘ has been dropped as 
an ordinate [according to Proposition I.35] ΑΒ is equal to ΒΘ, therefore ΑΘ is 
equal to double ΒΘ. Therefore [according to Proposition I.41 of Euclid] the tri-
angle ΑΘΓ is equal to the parallelogram ΒΓ.  
 And since as sq.ΓΘ is to sq.ΔΖ, so ΘΒ is to ΒΖ because of the section 
[according to Proposition I.20], but [according to the porism to Proposition 
VI.20 of Euclid] as sq.ΓΘ is to sq.ΔΖ, so the triangle ΑΓΘ is to the triangle ΕΔΖ 
and [according to Proposition VI.1 of Euclid] as ΘΒ is to ΒΖ, so the parallelo-
gram ΗΘ is to the parallelogram ΗΖ, therefore the triangle ΑΓΘ is to the triangle 
ΕΔΖ, so the parallelogram ΘΗ is to the parallelogram ΖΗ. 
 Therefore alternately as the triangle ΑΘΓ is to the parallelogram ΒΓ, so 
the triangle ΕΔΖ is to the parallelogram ΗΖ. 
 But the triangle ΑΓΘ is equal to the parallelogram ΗΘ ,therefore the 
triangle ΕΔΖ is equal to the parallelogram ΗΖ. 
 

[Proposition] 43 
 

 If a straight line touching a hyperbola or an ellipse or the circumference of 
a circle meets the diameter, and if  from the point of contact a straight line is 
dropped as an ordinate to the diameter, and if through the vertex a parallel [to 
an ordinate] is drawn meeting the straight line drawn through the point of con-
tact and the center, and if some  point [at random] is taken on the section, two 
straight lines are drawn to the diameter, one of which is parallel to the tangent 
and the other parallel to straight line dropped [as an ordinate] from the point of 
contact, then in the case of the hyperbola the triangle resulting from them that 
is the diameter and two lines drawn through the point taken at random to the 
diameter] will be less than the triangle cut off by the straight line through the 
center to the point of contact [by the ordinate through the point at random] by 
the triangle on the radius similar to the triangle cut off, and in the case of the 
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ellipse and the circumference of a circle [the triangle resulting from the diame-
ter and two lines through the point taken at random to the diameter] together 
with the triangle cut off [by the line] from the center [to the point of contact 
and by the ordinate through the point at random] will be equal to the triangle 
on the radius similar to the triangle cut off 88. 
 Let there be a hyperbola or an ellipse or the circumference of a circle 
whose diameter is ΑΒ, and center Γ, and let ΔΕ be drawn tangent to the section, 
and let ΓΕ be joined, and let ΕΖ be dropped as an ordinate, and let some point Η 
be taken on the section, and let ΗΘ be drawn parallel to the tangent, and let ΗΚ 
be dropped as an ordinate [and continued to meet ΓΕ at Μ], and through Β let 
ΒΛ be erected as an ordinate. 
 I say that the triangle ΚΜΓ differs from the triangle ΓΛΒ by the triangle 
ΗΚΘ . 
 [Proof]. For since ΕΔ touches and ΕΖ has been dropped, hence [according 
to Proposition I.39] the ratio ΕΖ to ΖΔ is compounded of [the ratios] ΓΖ to ΖΕ 
and the latus rectum to the latus transversum. 
 But as ΕΖ to ΖΔ, so ΗΚ is to ΚΘ, and [according to Proposition VI.4 of 
Euclid] as ΓΖ is to ΖΕ, so ΓΒ is to ΒΛ, therefore the ratio ΗΚ to ΚΘ  is com-
pounded of [the ratios] ΒΓ to ΒΛ and the latus rectum to the latus transversum. 
 And through those reasons it has been shown in the theorem 41[that is 
Proposition I.41] the triangle ΓΚΜ differs from the triangle ΒΓΛ by the triangle 
ΗΘΚ for the same  reasons have also been shown in the case of the parallelo-
grams, their doubles. 
 

  [Proposition] 44  
 

 If a straight line touching one of the opposite hyperbolas meets the di-
ameter, and if from the point of contact some straight line is dropped as an or-
dinate to the diameter, and if a parallel to it is drawn through the vertex of the 
other hyperbola meeting the straight line drawn through the point of contact 
and the center, and if some point is taken at random on the section and [from 
it] two straight lines are dropped to the diameter, one of which is parallel to the 
tangent and the other parallel to the straight line dropped as an ordinate from 
the point of contact, then the triangle resulting from them will be less than the 
triangle cut off by the dropped straight line from the center of the section by 
the triangle on the radius similar to the triangle cut off 89. 
 Let there be the opposite hyperbolas ΑΖ and ΒΕ and let their diameter be 
ΑΒ and center Γ, and from some point Ζ on the hyperbola ΖΑ let ΖΗ be drawn 
tangent to the section, and ΖΟ as an ordinate, and let ΓΖ be joined and contin-
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ued as ΓΕ, and through Β let ΒΛ be drawn parallel to ΖΟ, and let some point Ν 
be taken on the hyperbola ΒΕ, and from Ν let ΝΘ be dropped as an ordinate, 
and let ΝΚ be drawn parallel to ΖΗ. 
 I say that the sum of the triangles ΘΚΝ and ΓΒΛ is equal to the triangle 
ΓΜΘ. 
 [Proof]. For through Ε let ΕΔ be drawn tangent to the hyperbola ΒΕ, and 
let ΕΞ be drawn as an ordinate. Since then ΖΑ and ΒΕ are opposite hyperbolas 
whose diameter is ΑΒ, and  the straight line through whose center is ΖΓΕ, and 
ΖΗ and ΕΔ are tangents to the section, hence ΔΕ is parallel to ΖΗ. And ΝΚ is 
parallel to ΖΗ, therefore NK is also parallel to ΕΔ, and ΜΘ to ΒΛ. Since then ΒΕ is 
a hyperbola whose diameter is ΑΒ and whose center is Γ, and ΔΕ is tangent to 
the section, and ΕΞ drawn as an ordinate, and ΒΛ is parallel to ΕΞ, and Ν has 
been taken on the section as the point from which ΝΘ has been dropped as an 
ordinate, and ΚΝ has been drawn parallel to ΔΕ, therefore the sum of the 
triangles ΝΘΚ and ΒΓΛ is equal to the triangle ΘΜΓ for this has been shown in 
the theorem 43 [that is Proposition I.43]. 
 

[Proposition] 45 
 

 If a straight line touching a hyperbola or an ellipse or the circumference of 
a circle meets the second diameter, and if from the point of contact some 
straight line is dropped  to same diameter parallel to the other diameter, and if 
through the point of contact and the center a straight line is drawn, and if some 
point is taken as random on the section, and [from it] two straight lines are 
drawn to the second diameter, one of which  is parallel to the tangent and the 
other parallel to the dropped  straight line, then in the case of the hyperbola the 
triangle resulting from them is greater than the triangle cut off by the dropped 
straight line from the center by the triangle whose base is the tangent and ver-
tex is the center of the section, and in the case of the ellipse and the circle [re-
sulting from the second diameter and two straight lines drawn to the  second 
diameter] together with the triangle cut off will be equal to the triangle whose 
base is the tangent and whose vertex is the center of the section 90 . 

Let there be a hyperbola or an ellipse or the circumference of a circle 
ΑΒΓ, whose diameter is ΑΘ, and second diameter ΘΔ, and center Θ, and let ΓΜΛ 
touch it at Γ, and let ΓΔ be drawn parallel to ΑΘ, and let ΘΓ be joined and con-
tinued, and let some point Β be taken at random on the section, and from Β let 
ΒΕ and ΒΖ be drawn parallel to ΛΓ and ΓΔ. 
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 I say that in the case of the hyperbola the triangle ΒΕΖ is equal to the 
sum of the triangles ΗΘΖ and ΛΓΘ, and in the case of the ellipse and the circle 
the sum of the triangles ΒΕΖ and ΖΗΘ is equal to the triangle ΓΛΘ. 
 [Proof]. For let ΓΚ and ΒΝ be drawn parallel to ΔΘ. Since then ΓΜ is tan-
gent, and ΓΚ has been dropped as an ordinate, hence [according to Proposition 
I.39] the ratio ΓΚ to ΚΘ is compounded of [the ratios] ΜΚ to ΚΓ and the latus 
rectum to the latus transversum, and [according to Proposition VI.4 of Euclid] 
as ΜΚ is to ΚΓ, so ΓΔ is to ΔΛ, therefore the ratio ΓΚ to ΚΘ is compounded of 
[the ratios] ΓΔ to ΔΛ and the latus rectum is to the latus transversum. 
 And the triangle ΓΔΛ is the figure on ΚΘ, and the triangle ΓΚΘ, that is the 
triangle ΓΔΘ, is the figure on ΓΚ, that is on ΔΘ, therefore in the case of the hy-
perbola the triangle ΓΔΛ is equal to the sum of the triangle ΓΚΘ and the triangle 
on ΑΘ similar to the triangle ΓΔΛ, and in the case of the ellipse and the circle 
the sum of the triangles ΓΔΘ and ΓΔΛ is equal to the triangle on ΑΘ similar to 
the triangle ΓΔΛ for this was also shown in the case of their doubles in the theo-
rem 41 [that is Proposition I.41]. 
 Since then the triangle ΓΔΛ differs either from the triangle ΓΚΘ or from 
the triangle ΓΔΘ by the triangle on ΑΘ similar to the triangle ΓΔΛ, and it also dif-
fers by the triangle ΓΘΛ, therefore the triangle ΓΘΛ is equal to the triangle on 
ΑΘ similar to the triangle ΓΔΛ. Since then the triangle ΒΖΕ is similar to the tri-
angle ΓΔΛ, and the triangle ΗΖΘ [is similar] to the triangle ΓΔΘ, therefore they 
have the same ratio. And the triangle ΒΖΕ is described on ΝΘ between the ordi-
nate and the center, and the triangle ΗΖΘ on the ordinate ΒΝ, which is on ΖΘ, 
and by already shown [in Proposition I.41] the triangle ΒΖΕ differs from the tri-
angle ΗΘΖ by the triangle on ΑΘ similar to the triangle ΓΔΛ, and so also by the 
triangle ΓΘΛ. 
 

[Proposition] 46 
 

 If a straight line touching a parabola meets the diameter, then the 
straight line drawn through the point of contact parallel to the diameter in the 
direction of the section bisects the straight lines drawn in the section parallel to 
the tangent 91 . 
  Let there be a parabola whose diameter is ΑΒΔ, and let ΑΓ touch the 
section, and through Γ let ΗΓΜ be drawn  parallel to ΑΔ, and let some point Λ be 
taken at random on the section and let ΛΝΖΕ be drawn parallel to ΑΓ. 
 I say that ΛΝ is equal to ΝΖ. 
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 [Proof] . Let ΒΘ, ΚΖΗ, and  ΛΜΔ be drawn as ordinates. Since then by the 
already shown in the theorem 42 [that is Proposition I.42] the triangle ΕΛΔ is 
equal to the parallelogram BM  and [the triangle] ΕΖΗ is equal to the [parallelo-
gram] ΒΚ, therefore the remainders the parallelogram ΗΜ is equal to the quad-
rangle92 ΛΖΗΔ. 
 Let the common the quinquangle93  ΜΔΗΖΝ be subtracted, therefore the 
remainders the triangle ΚΖΝ is equal to [the triangle] ΛΜΝ, therefore [according 
to Proposition VI.22 of Euclid] ΖΝ is equal to ΛΝ 94 . 
 

[Proposition] 47 
 

 If a straight line touching a hyperbola or an ellipse or the circumference of 
a circle meets the diameter, and if through the point of contact and the center 
a straight line is drawn in the direction of the section, then it bisects the 
straight lines drawn in the section parallel to the tangent 95 . 

 Let there be a hyperbola or an ellipse or the circumference of a circle 
whose diameter is ΑΒ and center Γ, and let ΔΕ be drawn tangent to the section, 
and let ΓΕ joined and continued, and let a point Ν be taken at random on the 
section, and through Ν let [the straight] line ΘΝΟΗ be drawn parallel to ΝΗ. 
 I say that ΝΟ is equal to ΟΗ. 
 [Proof]. For let ΞΝΖ, ΒΛ, and ΗΜΚ be dropped as ordinates. Therefore by 
reasons already shown in the theorem 43 [that is Proposition I.43] the triangle 
ΘΝΖ is equal to the quadrangle ΛΒΖΞ, and the triangle ΗΘΚ is equal to the  
quadrangle ΛΒΚΜ. Therefore the remainders quadrangle ΝΗΚΖ is equal to the 
quadrangle ΜΚΖΞ. 
 Let the common quinquangle ΟΝΖΚΜ be subtracted, therefore the  re-
mainder triangle ΟΜΗ is equal to triangle ΝΞΟ . 
 And ΜΗ is parallel to ΝΞ, therefore [according to Proposition VI.22 of 
Euclid] ΝΟ is equal to ΟΗ 96 . 
 

[Proposition] 48  
 

 If a straight line touching one of opposite hyperbolas meets the diameter, 
and if through the point of contact and the center a straight line  drawn  cuts 
the other hyperbola, then  whatever line is drawn  in the other hyperbola  paral-
lel to the tangent, will be bisected by the drawn straight line 97 .  
 Let there be opposite hyperbolas whose diameter is ΑΒ and center Γ, and 
let ΚΛ touch the hyperbola A and let ΛΓ be joined and continued, and let some 
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point Ν be taken on the hyperbola Β, and through Ν let ΝΗ be drawn parallel to 
ΛΚ. 
 I say that ΝΟ is equal to ΟΗ. 
 [Proof]. For let ΕΔ be drawn through Ε tangent to the section, therefore 
[according to Proposition i.44] ΕΔ is parallel to ΛΚ. And so also to ΝΗ since 
then ΒΝΗ is a hyperbola whose center is Γ and tangent ΔΕ, and since ΓΕ has 
been joined and a point Ν has been taken on the section and through it ΝΗ has 
been drawn parallel to ΔΕ, by a theorem already shown [in Proposition I.47] for 
the hyperbola ΝΟ is equal to ΟΗ. 
 

[Proposition] 49 
 

 If a straight line touching a parabola meets the diameter and if through 
the point of contact a parallel to the diameter is drawn, and if from the vertex a 
straight line is drawn parallel to an ordinate, and if it is contrived that as the 
segment of the tangent between the straight line erected [as an ordinate] and 
the point of contact is to the segment of the parallel between the point of con-
tact and the straight line erected [as an ordinate], so is some straight line to 
the double of the tangent, then whatever straight line is drawn [parallel to the 
tangent] from the section to the straight line drawn through the point of con-
tact parallel to the diameter, will equal in square to the  rectangular plane under  
the straight line found [that is the latus rectum] and the straight line cut off by 
it [that is the line parallel to the tangent] from the point of contact 98. 
 Let there be a parabola whose diameter is ΜΒΓ, and ΓΔ its  tangent, and 
through Δ let ΖΔΝ be drawn parallel to ΒΓ, and let ΖΒ be erected as an ordinate, 
and let it be contrived that as ΕΔ is to ΔΖ, so some straight line Η is to double 
ΓΔ, and let some point Κ be taken on the section, and let ΚΛΠ be drawn 
through Κ parallel to ΓΔ. 
 I say that sq.ΚΛ is equal to pl.Η, ΔΛ, that is that with ΔΛ as diameter, Η is 
the latus rectum. 
 [Proof]. For let ΔΞ and ΚΝΜ be dropped as ordinates. And since 
ΓΔ touches the section, and ΔΞ has been dropped as an ordinate, then [accord-
ing to Proposition I.35] ΓΒ is equal to ΒΞ. 
 But ΒΞ is equal to ΖΔ. And therefore ΓΒ is equal to ΖΔ. And so also the 
triangle ΕΓΒ is equal to the triangle ΕΖΔ. 
 Let the common figure ΔΕΒΜΝ be added, therefore [according to Propo-
sition I.42] the quadrangle ΔΓΜΝ is equal to the parallelogram ΖΜ and is equal 
to the triangle ΚΠΜ.  
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 Let the common quadrangle ΛΠΜΝ be subtracted therefore the remain-
ders triangle ΚΛΝ is equal to parallelogram ΛΓ. And the angle ΔΛΠ is equal to 
the angle ΚΛΝ, therefore pl.ΚΛΝ is equal to double pl.ΛΔΓ. And since as ΕΔ is to 
ΔΖ, so Η is to double ΓΔ, and as ΕΔ is to ΔΖ, so ΚΛ is to ΛΝ, therefore also as 
Η is to double ΓΔ, so ΚΛ is to ΚΝ.  
 But as ΚΛ is to ΛΝ, so sq.ΚΛ is to pl.ΚΛΝ, and as Η is to double ΓΔ, so 
pl.Η,ΔΛ is to double pl.ΛΔΓ, therefore as sq.ΚΛ is to pl.ΚΛΝ, so pl.Η, ΔΛ is to 
double pl.ΓΔΛ, and corresponding [as sq.ΚΛ is to pl.Η,ΔΛ , so pl.ΚΛΝ is to dou-
ble pl.ΓΔΛ]. But pl.ΚΛΝ is equal to double pl.ΓΔΛ, therefore also sq.ΚΛ is equal 
to pl.Η,ΔΛ. 
  

[Proposition] 50 
 

 If a straight line touching a hyperbola or an ellipse or the circumference of 
a circle meets the diameter, and if a straight line is drawn through the point of 
contact and the center, and if from the vertex a straight  line erected parallel to 
an ordinate meets the straight line drawn through the point of contact and the 
center, and if it is contrived that as the segment of the tangent between the 
point of contact and the straight line erected [as an ordinate from the vertex] is 
to the segment of the straight line drawn through the point of contact and the 
center between the point of contact and the straight line erected [as an ordi-
nate from the vertex], so some  straight line is to the double tangent, then any 
straight line parallel to the tangent and drawn from the section to the straight 
line drawn through the point of contact and the center will equal in square to a 
rectangular plane applied to the found straight line having as breadth the 
straight line cut off [of the diameter] by the ordinate from the point of contact, 
and in the case of the hyperbola  increased  by a figure similar to the rectangu-
lar plane under the double straight line between the center and the point of 
contact and the found straight line, but in the case of the ellipse and the circle  
decreased by the same figure 99 . 
 Let there be a hyperbola or an ellipse or the circumference of a circle 
whose diameter is ΑΒ and center Γ, and let ΔΕ be a tangent, and let ΓΕ be 
joined and continued both ways, and let ΓΚ be made equal to ΕΓ, and through 
Β let ΒΖΗ be erected as an ordinate, and through Ε let ΕΘ be drawn perpendicu-
lar to ΕΓ, and let it be that as ΖΕ is to ΕΗ, so ΕΘ is to double ΕΔ, and let ΘΚ be 
joined and continued, and let some point Λ be taken on the section, and 
through it let ΛΜΞ be drawn parallel to ΕΔ, and ΛΡΝ parallel to ΒΗ, and let ΜΠ 
[be drawn] parallel to ΕΘ. 
 I say that sq.ΛΜ is equal to pl.ΕΜΠ. 
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 [Proof]. For let ΓΣΟ be drawn through Γ parallel to ΚΠ. And since ΕΓ is 
equal to ΓΚ,and as ΕΓ is to ΚΓ,so ΕΣ is to ΣΘ, therefore also ΕΣ is equal to ΣΘ.. 
 And since as ΖΕ is to ΕΗ, so ΘΕ is to double ΕΔ, and double ΕΣ is equal to 
ΕΘ, therefore also as ΖΕ is to ΕΗ, so ΣΕ is to ΕΔ, and [according to Proposition 
VI.4 of Euclid] as ΖΕ is to ΕΗ, so ΛΜ is to ΜΡ, therefore as ΛΜ is to ΜΡ, so ΣΕ is 
to ΕΔ. 
 And since it was shown [in Proposition I.43] that in the case of the hy-
perbola the triangle ΡΝΓ is equal to the sum of the triangles ΛΝΞ and ΗΒΓ, and 
is equal to the sum of the triangles ΛΝΞ and ΓΔΕ, and in the case of the ellipse 
and the circle the sum of the triangles ΡΝΓ and ΛΝΞ is equal to the triangle ΗΒΓ, 
and is equal to the triangle ΓΔΕ. 
 Therefore in the case of the hyperbola with the common triangle ΕΓΔ and 
common quadrangle ΝΡΜΞ subtracted, and in the case of the ellipse and the 
circle with the common triangle ΜΞΓ subtracted the triangle ΛΜΡ is equal to the 
quadrangle ΜΕΔΞ. And ΜΞ is parallel to ΔΕ, and the angle ΛΜΡ is equal to the 
angle ΕΜΞ. Therefore [according to Proposition I.49] pl.ΛΜΡ is equal to pl.ΕΜ, 
the sum of ΕΔ and ΜΞ. And since as ΜΓ is to ΓΕ, so ΜΞ is to ΕΔ, and as ΜΓ is to 
ΓΕ, so ΜΟ is to ΕΣ, therefore as ΜΟ is to ΕΣ, so ΜΞ is to ΕΔ. And componendo 
as the sum of ΜΟ and ΕΣ is to ΕΣ, so the sum of ΜΞ and ΕΔ is to ΕΔ, and alter-
nately as the sum of ΜΟ and ΕΣ is to the sum of ΜΞ and ΕΔ, so ΕΣ is to ΕΔ. 
But as the sum of ΜΟ and ΕΣ is to the sum of ΜΞ and ΕΔ, so pl.ΕΜ, the sum of 
ΜΟ and ΕΣ is to pl.ΕΜ, the sum of ΜΞ and ΕΔ, and as ΕΣ is to ΕΔ, so ΛΜ is to 
ΜΡ, and so ΖΕ is to ΕΗ, or as ΕΣ is to ΕΔ, so sq.ΛΜ is to pl.ΛΜΡ, therefore as pl. 
ΜΕ,the sum of ΜΟ and ΕΣ, is to pl. ΕΜ,the sum of ΜΞ and ΕΔ, so sq.ΛΜ is to 
pl.ΛΜΡ, and alternately as pl. ΜΕ, the sum of ΜΟ and ΕΣ is to sq.ΛΜ, so pl. ΕΜ, 
the sum of ΜΞ and ΕΔ is to pl.ΛΜΡ. 
 But pl.ΛΜΡ is equal to pl.ΜΕ, the sum of ΜΞ and ΕΔ, therefore sq.ΛΜ is 
equal to pl.ΕΜ, the sum of ΜΟ and ΕΣ, and ΣΕ is equal to ΑΘ , and ΣΘ is equal to 
ΟΠ. Therefore sq.ΛΜ is equal to ΕΜΠ. 
 

[Proposition] 51 
 

 If a straight line touching either of the opposite hyperbolas meets the di-
ameter, and if through the point of contact and the center some straight line is 
drawn to the other hyperbola, and if from the vertex a straight line is erected 
parallel to an ordinate and meets the straight line drawn through the point of 
contact and the center, and if it is contrived that as the segment of the tangent 
between the erected straight line and the point of contact is to the segment of 
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the straight line drawn through the point of contact between the point of con-
tact and the erected straight line, so some straight line is to the double tan-
gent, then whatever straight line in the other hyperbola is drawn to the straight 
line through the point of contact and the center parallel to the tangent, will be 
equal in square to the rectangular plane applied to the found straight line and 
having as breadth the straight line cut off by it from the point of contact and 
increased by a figure similar to the rectangular plane under the straight line be-
tween the opposite hyperbolas and the found straight line 100 . 
 Let there be opposite hyperbolas whose diameter is ΑΒ and center Ε, and 
let ΓΔ be drawn tangent to the hyperbola Β and ΓΕ be joined and continued, and 
let ΒΛΗ be drawn as an ordinate, and let it be contrived that as ΛΓ is to ΓΗ, so 
some straight line Κ is to double ΓΔ.. 
 Now it is evident that the straight lines in the hyperbola ΒΓ parallel to ΓΔ 
and drawn to ΕΓ continued are equal in square to the planes applied to Κ and 
having as breadths the straight line cut off by them from the point of contact, 
and projecting by a figure similar to pl.ΓΖ,Κ for ΖΓ is equal to double ΓΕ. 
 I say then that in the hyperbola ΖΑ the same  reason will come about. 
 [Proof]. For let ΜΖ be drawn through Ζ tangent to the hyperbola ΑΖ, and 
let ΑΞΝ be erected as an ordinate. And since ΒΓ and ΑΖ are opposite hyperbo-
las, and ΓΔ and ΜΖ are tangents to them, therefore [according to Proposition 
I.44] ΓΔ is equal and parallel to ΜΖ. But also ΓΕ is equal to ΕΖ, therefore also ΕΔ 
is equal to ΕΜ. And since as ΛΓ is to ΓΗ, so Κ is to double ΓΔ or double ΜΖ, 
therefore also as ΞΖ is to ΖΝ, so Κ is to double ΜΖ. 
 Since then ΑΖ is a hyperbola whose diameter is ΑΒ and tangent ΜΖ, and 
ΑΝ has been drawn as an ordinate, and as ΞΖ is to ΖΝ, so Κ is to double ΖΜ, 
hence any lines drawn from the section to ΕΖ continued, parallel to ΖΜ, will be 
equal in square to the rectangular plane under Κ and the line cut off by them  
from Ζ increased by a figure [according to Proposition I.50] similar to pl.ΓΖ,Κ. 
 

[Porism] 
  
 And with these  reasons  shown, it is at once evident that in the parabola 
each of the straight lines drawn parallel to the original diameter is a diameter 
[according to Proposition I.46] but in the hyperbolas and the ellipse and the op-
posite hyperbolas each of the straight lines drawn through  the center is a di-
ameter [according to Propositions I.47 and I.48], and that in the parabola the 
straight line dropped to each of the diameters parallel to the tangents will be 
equal in square to the rectangular planes applied to it [according to Proposition 
I.49], but in the hyperbola and the opposite hyperbolas they will equal in square 
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to the planes applied to the diameter increased by the same figure [according 
to Propositions I.50 and I.51], but in the ellipse the planes applied to the diame-
ter and decreased by the same figure [according to Proposition I.50], and that 
all which has been already proved about the sections as following when the 
principal diameters are used, will also those same reasons follow when the other 
diameters are taken. 
 

[Proposition] 52 [Problem] 
 

 Given a straight line in a plane bounded at one point, to find in the plane 
the section of a cone called parabola whose diameter is the given straight line 
and whose vertex is the end of the straight line, and where whatever straight 
line dropped from the section to the diameter at given angle will be equal in 
square to the rectangular plane under the straight line cut off by it from the 
vertex of the section and by some other given straight line 101. 
 Let there be the straight line ΑΒ given in position and  bounded at Α, and 
another [straight line] ΓΔ given in magnitude, and first let the given angle be  
right, it is required then to find a parabola in the considered plane whose diame-
ter is ΑΒ, whose vertex is Α, and whose latus rectum is ΓΔ and there the 
straight lines dropped as ordinates will be dropped at a right angle, that is so 
that ΑΒ [according to Definition 7] is the axis. 
 [Solution]. Let ΑΒ be continued [beyond Α] to Ε, and let ΓΗ be taken as 
quarter of ΓΔ, and let ΕΑ is greater than ΓΗ, and let as ΓΔ is to Θ, so Θ is to ΕΑ. 
Therefore as ΓΔ is to ΕΑ, so sq.Θ is to sq.ΕΑ, and ΓΔ is less than quadruple ΕΑ, 
therefore also sq.Θ is less than quadruple sq.ΕΑ, and Θ is less than double ΕΑ. 
And so double ΕΑ is greater than Θ. Therefore it is possible for a triangle to be  
constructed from Θ and two ΕΑ. Then let the triangle ΕΑΖ be constructed on 
ΕΑ at right angles to the considered plane, so that ΕΑ is equal to ΑΖ, and Θ  is 
equal to ΖΕ, and let ΑΚ be drawn parallel to ΖΕ, and ΖΚ to ΕΑ,and let a cone be 
conceived whose vertex is Ζ and whose base is the circle about the diameter ΚΑ 
at right angles to the plane through [the triangle] ΑΖΚ. Then the cone [accord-
ing to Definition 3] will be right for ΑΖ is equal to ΖΚ. 
 And let the cone be cut [through B] by a plane parallel to the circle ΚΑ, 
and let it make as a section [according to Proposition I.4] the circle ΜΝΞ  at 
right angles clearly to the plane through [the triangle] ΜΖΝ, and let ΜΝ be the 
common section of the circle ΜΝΞ and of the triangle ΜΖΝ, therefore it is the 
diameter of the circle and let ΞΛ be the common section of the considered 
plane and of the circle. Since then the circle ΜΝΞ is at right angles to the 
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triangle ΜΖΝ, and the  considered plane also is at right angles to the triangle 
ΜΖΝ, therefore ΛΞ, their common section, is at right angles to the triangle ΜΖΝ, 
that is to the triangle ΚΖΑ [according to Proposition XI.19 of Euclid], and there-
fore it is perpendicular to all straight lines touching it in the triangle, and so it is 
perpendicular to both ΜΝ and ΑΒ. 
 Again since a cone whose base is the circle ΜΝΞ and whose vertex is Ζ 
has been cut by a plane at right angles to the triangle ΜΖΝ and makes as a sec-
tion the circle ΜΝΞ, and since it has also been cut by another plane cutting the 
base of the cone in ΞΛ at right angles to ΜΝ which is the common section of 
the circle ΜΝΞ and the triangle ΜΖΝ, and the common section of the considered 
plane and of the triangle ΜΖΝ, [the straight line] ΑΒ, is parallel to the side of 
the cone ΖΚΜ, therefore the resulting section of the cone in the considered 
plane is a parabola, and its diameter is ΑΒ, and the straight lines dropped as or-
dinates from the section to ΑΒ will be dropped at right angles for they are paral-
lel to ΞΛ which is perpendicular to ΑΒ. And since as ΓΔ is to Θ,  so Θ is to ΕΑ, 
and  ΕΑ is equal to ΑΖ ,and is equal to ΖΚ, and Θ is equal to ΕΖ and is equal to 
ΑΚ, therefore as ΓΔ is to ΑΚ, so ΑΚ is to ΑΖ. And therefore as ΓΔ is to ΑΖ, so 
sq.ΑΚ is to sq.ΑΖ or pl.ΑΖΚ. Therefore ΓΔ is the latus rectum of the section for 
this has been shown in  the theorem11 [that is Proposition I.11]102.  
 

[Proposition] 53 [Problem] 
 

 With the same supposition let the given angle not be right, and let the 
angle ΘΑΖ be made equal to it, and let ΑΘ is equal to half of ΓΔ, and from Θ let 
ΘΕ be drawn parallel to ΒΘ, and from Α let ΑΛ be drawn perpendicular to ΕΛ, 
and let ΕΛ be bisected at Κ, and from Κ let ΚΜ be drawn perpendicular to ΕΛ 
and continued to Ζ and Η, and let pl.ΛΚΜ is equal to sq.ΑΛ. And the given two 
straight lines ΛΚ and ΚΜ, ΚΛ in position and bounded at Κ, and ΚΜ in magni-
tude, and let a parabola be described with a right angle whose diameter is ΚΛ, 
and whose vertex is Κ, and whose latus rectum is ΚΜ, as has been shown be-
fore [in Proposition I.52] , and it will pass through Α because [according to 
Proposition I.11] sq.ΑΛ is equal to pl.ΛΚΜ, and ΕΑ will touch the section [ac-
cording to Proposition I.33] because ΕΚ is equal to ΚΛ. And ΘΑ is parallel to 
ΕΚΛ, therefore ΘΑΒ is the diameter of the section, and the straight lines 
dropped to it parallel to ΑΕ will be bisected by ΑΒ [according to Proposition 
I.46],and they will be dropped at the angle ΘΑΕ. And since the angle ΑΕΘ is 
equal to the angle ΑΗΖ, and the angle at Α is common, therefore the triangle 
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ΑΘΕ is similar to the triangle ΑΗΖ. Therefore as ΘΑ is to ΕΑ, so ΖΑ is to ΑΗ, 
therefore as double ΑΘ is to double ΑΕ, so ΖΑ is to ΑΗ. 
   But ΓΔ is equal to double ΑΘ, therefore as ΖΑ is to ΑΗ, so ΓΔ is to double ΑΕ.. 
Than by already shown in the theorem 49 [Proposition I.49] ΓΔ is the latus rec-
tum. 
 

     [Proposition] 54 [Problem] 
  

 Given two bounded straight lines perpendicular to each other, one of 
them being drawn on the side of the right angle, to find on the continued 
straight line the section of a cone called hyperbola in the same plane with the 
straight lines, so that the continued straight line is a diameter of the section, 
and the point at the angle is the vertex, and where whatever straight line is 
dropped from the section to the diameter making an angle equal to a given an-
gle will equal in square to the rectangular plane applied to the other straight line 
having as breadth the straight line cut off by the dropped straight line beginning 
of the vertex and increased by a figure similar and similarly situated to the plane 
under the original straight lines 103 .   
 Let there be two bounded straight lines ΑΒ and ΒΓ perpendicular to each 
other, and let ΑΒ be continued to Δ. It is required then to find in the plane 
through ΑΒ and ΒΓ a hyperbola whose diameter will be ΑΒΔ and vertex Β, and 
the latus rectum  ΒΓ, and where the straight lines dropped from the section to 
ΒΔ at the given angle will equal in square to the rectangular planes applied to ΒΓ 
and having as breadths the straight lines cut off by them from B and increased  
by a figure similar and similarly situated to pl.ΑΒΓ. 
 [Solution]. First let the given angle be right, and on ΑΒ let a plane be 
erected at right angles to the considered plane, and let the circle ΑΕΒΖ be de-
scribed in it about ΑΒ, so that the segment of the diameter of the circle within 
the arc ΑΕΒ has to the segment of the diameter within the arc ΑΖΒ a ratio not 
greater than that of ΑΒ to ΒΓ, and let [the arc] ΑΕΒ be bisected at Ε, and let 
ΕΚ be drawn perpendicular from Ε to ΑΒ and let it be continued to Λ, therefore 
[according to Proposition III.1 of Euclid] ΕΛ is a diameter. If then as ΑΒ is to ΒΓ, 
so ΕΚ is to ΚΛ, we use Λ, but if not, let it be contrived [according to Proposi-
tion VI.12 of Euclid] that as ΑΒ is to ΒΓ, so ΕΚ is to ΚΜ where ΚΜ is less than 
ΚΛ, and through Μ let ΜΖ be drawn parallel to ΑΒ, and let ΑΖ , ΕΖ, and ΖΒ be 
joined, and through  Β let ΒΞ be drawn parallel to ΖΕ. Since then the angle ΑΖΕ 
is equal to the angle ΕΖΒ, but the angle ΑΖΕ is equal to the angle ΑΞΒ, and the 
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angle ΕΖΒ is equal to the angle ΞΒΖ, therefore also the angle ΞΒΖ is equal to the 
angle ΖΞΒ, therefore also ΖΒ is equal to ΖΞ. 
 Let a cone be conceived whose vertex is Ζ and whose base is the circle 
about diameter ΒΞ at right angles to the triangle ΒΖΞ. Then the cone will be 
right for ΖΒ is equal to ΖΞ. 
 Then let ΒΖ, ΖΞ, ΜΖ be continued, and let the cone be cut by a plane par-
allel to the circle ΒΞ, then the section [according to Proposition I.4] will be a 
circle. Let it be the circle ΗΠΡ, and so ΗΘ will be the diameter of the circle. And 
let ΠΔΡ be the common section of the circle ΗΘ and of the considered  plane, 
then ΠΔΡ will be perpendicular to both ΗΘ and ΔΒ for both circles ΞΒ and ΘΗ 
are perpendicular to the triangle ΖΗΘ, and the considered plane is perpendicular 
to the triangle ΖΗΘ, and therefore their common section ΠΔΡ is perpendicular to 
the triangle ΖΗΘ, therefore it makes right angles also with all straight lines 
touching it and situated in the same plane. 
 And since a cone whose base is the circle ΗΘ and vertex Ζ has been cut 
by a plane perpendicular to the triangle ΖΗΘ, and has also been cut by another 
plane, the considered plane, in ΠΔΡ perpendicular to ΗΔΘ, and the common sec-
tion of the considered plane and the triangle ΗΖΘ, that is ΔΒ continued in the 
direction of Β, meets ΗΖ at Α, therefore, as it was already shown before [in 
Proposition I.12] the section ΠΒΡ will be a hyperbola whose vertex is Β, and 
where the straight lines dropped as ordinates to ΒΔ will be dropped at a right 
angles for they are parallel to ΠΔΡ. And since as ΑΒ is to ΒΓ, so ΕΚ is to ΚΜ, 
and as ΕΚ is to ΚΜ, so ΕΝ is to ΝΖ, and pl.ΕΝΖ is to sq.ΝΖ, therefore as ΑΒ is to 
ΒΓ, so pl.ΕΝΖ is to sq.ΝΖ. And [according to Proposition III.35 of Euclid] pl.ΕΝΖ 
is equal to pl.ΑΝΒ, therefore as ΑΒ is to ΒΓ, so pl.ΑΝΒ is to sq.ΝΖ. 
 But the ratio pl.ΑΝΒ to sq.ΝΖ is compounded of [the ratios] ΑΝ to ΝΖ and 
ΒΝ to ΝΖ, but as ΑΝ is to ΝΖ, so ΑΔ is to ΔΗ, and ΖΟ is to ΟΗ, and as ΒΝ is to 
ΝΖ, so ΖΟ is to ΟΘ, therefore the ratio ΑΒ to ΒΓ is compounded of [the ratio] 
ΖΟ to ΟΗ and ΖΟ to ΟΘ, that is sq.ΖΟ to pl.ΗΟΘ. Therefore as ΑΒ is to ΒΓ, so 
sq.ΖΟ is to pl.ΗΟΘ. 
 And ΖΟ is parallel to ΑΔ, therefore ΑΒ is the latus transversum and ΒΓ 
is the latus rectum for it has been shown in the theorem 12 [that is Proposition 
I.12]. 
 

[Proposition] 55 [Problem] 
 

 Then let the given angle not be right, and let there be two given  straight 
lines ΑΒ and ΑΓ, and let the given angle be equal to the angle ΒΑΘ, then it is 
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required to describe a hyperbola whose diameter will be ΑΒ, and the latus rec-
tum ΑΓ, and where the ordinates will be dropped at the angle ΘΑΒ. 
 Let ΑΒ be bisected at Δ, and let the semicircle ΑΖΔ be described on ΑΔ, 
and let some straight line ΖΗ parallel to ΑΘ be drawn to the semicircle  where as 
sq.ΖΗ is to pl.ΔΗΑ, so ΑΓ is to ΑΒ, and let ΖΘΔ be joined and continued to Δ, and 
let as ΖΔ is to ΔΛ, so ΔΛ is to ΔΘ, and let ΔΚ be made equal to ΔΛ, and let 
pl.ΛΖΜ is equal to sq.ΑΖ, and let ΚΜ be joined, and through Λ let ΛΝ be drawn 
perpendicular to ΚΖ and let it be continued towards Ξ. And with two given 
bounded ΚΛ and ΛΝ perpendicular to each other, let a hyperbola be described 
whose  latus transversum is ΚΛ and latus rectum ΛΝ, and where the straight 
lines dropped from the section to the diameter will be dropped at a right angles 
and will be equal in square to the rectangular plane [according to Proposition 
I.54] applied to ΛΝ and having as breadths the straight lines cut off by them 
from Λ and increased by a figure similar to pl.ΚΛΝ, and the section will pass 
through Α for [according to Proposition I.12] sq.ΑΖ is equal to pl.ΛΖΜ. 
 And ΑΘ will touch it for [according to Proposition I.37] pl.ΖΔΘ is equal to 
sq.ΔΛ, and so ΑΒ [according to Proposition I.47 and Definition 4] is a diameter 
of the section. And since as ΓΑ is to double ΑΔ or ΑΒ, so sq.ΖΗ is to pl.ΔΗΑ, but 
the ratio ΓΑ to double ΑΔ is compounded of [the ratios] ΓΑ to double ΑΘ and 
double ΑΘ to double ΑΔ, or the ratio ΓΑ to double ΑΔ is compounded of [the 
ratios] ΓΑ to double ΑΘ and ΑΘ to ΑΔ, and as ΑΘ is to ΑΔ, so ΖΗ is to ΗΔ, 
therefore the ratio ΓΑ to ΑΒ is compounded of [the ratios] ΓΑ to double ΑΘ 
and ΖΗ to ΗΔ. 
 But also the ratio sq.ΖΗ to pl.ΔΗΑ is compounded of [the ratios] ΖΗ to ΗΔ 
and ΖΗ to ΗΑ, therefore the ratio compounded  of [the ratios] ΓΑ to double ΑΘ 
and ΖΗ to ΗΔ is the same, as the ratio compounded of [the ratios] ΖΗ to ΗΑ 
and  ΖΗ to ΗΔ. 
 Let the common ratio ΖΗ to ΗΔ be taken away, therefore as ΓΑ is to dou-
ble ΑΘ, so ΖΗ is to ΗΑ. 
 But as ΖΗ is to ΗΑ, so ΟΑ is to ΑΞ, therefore as ΓΑ is to double ΑΘ, so 
ΟΑ is to ΑΞ. 
 But whenever this is so, ΑΓ is the latus rectum for the ordinates to the 
diameter for this has been shown in the theorem 50 [that is Proposition I.50]. 
 

     [Proposition] 56 [Problem] 
  

 Given two bounded straight lines perpendicular to each other, to find one 
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of them as diameter in the same plane with the [mentioned] two straight lines 
the section of a cone called ellipse whose vertex will be the point at the  
right angle, and where  the straight lines dropped as ordinates from the section 
to the diameter at a given angle will  be equal in square to the rectangular 
planes applied to the other straight line having as breadth the straight line cut 
off by them  from the vertex  of the section and  decreased  by a figure similar 
and similarly situated to the plane under the given straight lines 104 .   
 Let there be two given straight lines ΑΒ and ΑΓ perpendicular to each 
other, of which the greater is ΑΒ, then it is required to describe in the consid-
ered plane an ellipse whose diameter will be ΑΒ and vertex Α and the latus rec-
tum ΑΓ, and where the ordinates will be dropped from the section to  
the diameter at a given angle and will be equal in square to the rectangular 
plane applied to ΑΓ and having as breadths the straight lines cut off by them 
from Α and decreased by a figure similar and similarly situated to pl.ΒΑΓ. 
 [Solution]. First let the given angle be right, and let a plane be erected 
from ΑΒ at right angles to the considered plane, and in it on ΑΒ let the arc of a 
circle ΑΔΒ be described, and its midpoint be Δ, and let ΔΑ and ΔΒ be joined, and 
let ΑΞ be made equal to ΑΓ, and through Ξ let ΞΟ be drawn parallel to ΔB, and 
through Ο let ΟΖ be drawn parallel to ΑΒ, and let ΔΖ be joined and let it meet 
continued ΑΒ at Ε, then we will have as ΑΒ is to ΑΓ, so ΑΒ is to ΑΞ, and ΔΑ is to 
ΑΟ, and ΔΕ is to ΕΖ. 
 And let ΑΖ and ΖΒ be joined and continued, and let some point Η be taken 
at random on ΖΑ, and through it let ΗΛ be drawn parallel to ΔΕ and let it meet 
continued ΑΒ at Κ, then let ΖΟ be continued and let it meet ΗΚ at Λ. 
Since then  the arc ΑΔ is equal to the arc ΔΒ, [according to Proposition III.27 of 
Euclid] the angle ΑΒΔ is equal to the angle ΔΖΒ. 
 And since the angle ΕΖΑ is equal to the sum of the angles ΖΔΑ and ΖΑΔ, 
but the angle ΖΑΔ is equal to the angle ΖΒΔ, and the angle ΖΔΑ is equal to the 
angle ΖΒΑ, therefore also the angle ΕΖΑ is equal to the angle ΔΒΑ and is equal 
to the angle ΔΖΒ. 
 And also ΔΕ is parallel to ΛΗ, therefore the angle ΕΖΑ is equal to the angle 
ΖΗΘ, and the angle ΔΖΒ is equal to the angle ΖΘΗ. 
 And also the angle ΖΗΘ is equal to the angle ΖΘΗ, and ΖΗ is equal to ΖΘ. 
 Then let the circle ΗΘΝ be described about ΘΗ at right angles to the tri-
angle ΘΗΖ, let a cone be conceived whose base is the circle ΗΘΝ, and whose 
vertex is Ζ, then the cone will be right because ΖΗ is equal to ΖΘ. 
 And since the circle ΗΘΝ is at right angles to the plane ΘΗΖ, and the con-
sidered plane is also at right angles to the plane through ΗΘ and ΘΖ, therefore 



58 

their common section will be at right angles to the plane through ΗΘ and  ΘΖ. 
Then  let their common section be ΚΜ, therefore ΚΜ is perpendicular to both 
ΑΚ and ΚΗ. 
 And since a cone whose base is the circle ΗΘΝ and whose vertex is Ζ, has 
been cut  by a plane through the axis and makes as a section the triangle ΗΘΖ, 
and has been cut also by another plane through ΑΚ and ΚΜ,  which is the con-
sidered plane, in ΚΜ which is perpendicular to ΗΚ, and the plane meets the 
sides of the cone ΖΗ and ΖΘ, therefore the resulting section [according to 
Proposition i.13] is an ellipse whose diameter ΑΒ and where the ordinates will be 
dropped at a right angle for they are parallel to ΚΜ. And since as ΔΕ is to ΕΖ, so 
pl.ΔΕΖ or pl.ΒΕΑ is to sq.ΕΖ ,and the ratio pl.ΒΕΑ to sq.ΕΖ is compounded of 
[the ratios] ΒE to ΕΖ and ΑΕ to ΕΖ, but as ΒΕ is to ΕΖ, so ΒΚ is to ΚΘ, and as 
ΑΕ is to ΕΖ, so ΑΚ is to ΚΗ, and ΖΛ is to ΛΗ, therefore the ratio ΒΑ to ΑΓ is 
compounded of [the ratios] ΖΛ to ΛΗ and ΖΛ to ΛΘ which is the same as the 
ratio sq.ΖΛ to pl.ΗΛΘ, therefore as ΒΑ is to ΑΓ, so ΖΛ is to pl.ΗΛΘ. Whenever 
this is so, ΑΓ is the latus rectum of the eidos, as it has been shown in the theo-
rem 13 [that is Proposition I.13]. 
 

[Proposition] 57 [Problem] 
 

 With the same supposition let ΑΒ be less than ΑΓ, and  let it be required 
to the scribe an ellipse about diameter ΑΒ so that ΑΓ is the latus rectum. 
 Let ΑΒ bisected at Δ, and from Δ let [the straight line] ΕΔΖ be drawn per-
pendicular to ΑΒ, and let sq.ΖΕ is equal to ΒΑΓ so that ΖΔ is equal to ΔΕ, and let 
ΖΗ be drawn parallel to ΑΒ, and let it be contrived that as ΑΓ is to ΑΒ, so ΕΖ is 
to ΖΗ, therefore also ΕΖ is greater than ΖΗ. And since pl.ΓΑΒ is equal to sq.ΕΖ, 
hence as ΓΑ is to ΑΒ, so sq.ΖΕ is to sq.ΑΒ, and sq.ΔΖ is to sq.ΔΑ. But as ΓΑ is 
to ΑΒ, so ΕΖ is to ΖΗ, therefore as ΕΖ is to ΖΗ, so sq.ΖΔ is to sq.ΔΑ. But sq.ΖΔ is 
equal to pl.ΖΔΕ, therefore as ΕΖ is to ΖΗ, so pl.ΕΔΖ is to sq.ΑΔ. 
 Then with two bounded straight lines situated at right angles to each 
other and with ΕΖ greater, let an ellipse be described whose diameter is ΕΖ and 
latus rectum ΖΗ [according to Proposition I.56], then the section will pass 
through Α because [according to Proposition I.21] as pl.ΖΔΕ is to sq.ΔΑ, so ΕΖ is 
to ΖΗ. And ΑΔ is equal to ΔΒ, then it will also pass through Β. Then an ellipse has 
been described about ΑΒ. 
 And since as ΓΑ is to ΑΒ, so sq.ΖΔ is to sq.ΔΑ,and sq.ΔΑ is equal to 
pl.ΑΔΒ, therefore as ΓΑ is to ΑΒ, so sq.ΔΖ is to pl.ΑΔΒ. And so ΑΓ [according to 
Proposition I.21] is the latus rectum. 
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[Proposition] 58 [Problem] 

 
 But then let the given angle not be right, and let the angle ΒΑΔ be equal 
to it, and let ΑΒ be bisected at Ε, and let the semicircle ΑΖΕ be described on 
ΑΕ, and in it let ΖΗ be drawn parallel to ΑΔ making as sq.ΖΗ is to pl.ΑΗΕ, so 
ΓΑ is to ΑΒ, and let ΑΖ and ΕΖ be joined and continued, and let at ΔΕ is to ΕΘ, 
so ΕΘ is to ΕΖ, and let ΕΚ is to ΕΘ, and let it be contrived that pl.ΘΖΛ is equal 
to sq.ΑΖ, and let ΚΛ be joined and from Θ let ΘΜΞ be drawn perpendicular to 
ΘΖ and so parallel to ΑΖΛ for the angle at Ζ is right. And with given bounded ΚΘ 
and ΘΜ perpendicular to each other, let an ellipse be described whose the 
transverse diameter is ΚΘ, and the latus rectum of whose eidos is ΘΜ, and 
where the ordinate to ΘΚ [according to Propositions I.56 and I.57] will be 
dropped at right angles, then the section will pass through Α because [accord-
ing to Proposition I.13] sq. ΖΑ is equal to pl.ΘΖΛ. And since ΘΕ is equal to ΕΚ, 
and ΑΕ is equal to ΕΒ, the section will also pass through Β, and Ε will be the 
center, and ΑΕΒ will be the diameter. And ΔΑ will touch the section because 
pl.ΔΕΖ is equal to sq.ΕΘ. And since as ΓΑ is to ΑΒ , so sq.ΖΗ is to pl.ΑΗΕ, but 
the ratio ΓΑ to ΑΒ is compounded of [the ratios] ΓΑ to double ΑΔ and double 
ΑΔ to ΑΒ or ΔΑ to ΑΕ, and the ratio sq.ΖΗ to pl.ΑΗΕ is compounded of [the ra-
tios] ΖΗ to ΗΕ and ΖΗ to ΗΑ, therefore the ratio compounded of [the ratios] ΓΑ 
to double ΑΔ and ΔΑ to ΑΕ is the same, as the ratio compounded of [the ratios] 
ΖΗ to ΗΕ and ΖΗ to ΗΑ. 
 But as ΔΑ is to ΑΕ, so ΖΗ is to ΗΕ, and common ratio being taken away, 
we will have as ΓΑ is to double ΑΔ, so ΖΗ is to ΗΑ or as ΓΑ is to double ΑΔ, so 
ΞΑ is to ΑΝ. 
 And whenever this is so [according to Proposition I.50]  ΑΓ is the latus 
rectum of the eidos. 
 

[Proposition] 59 [Problem] 
 

 Given two bounded straight lines perpendicular to each other, to find 
opposite hyperbolas whose diameter is one of the given straight lines and 
whose vertices are the ends of this straight line, and where the straight lines 
dropped in each of the hyperbolas at a given angle will equal in square to the 
rectangular planes applied to the other of the straight lines and increased by a 
figure similar to the rectangular plane under the given straight lines 105. 
 Let there be two given bounded straight lines ΒΕ and ΒΘ perpendicular to 
each other, and let the given angle be Η, then it is required to describe opposite 
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hyperbolas about one of the straight lines ΒΕ and ΒΘ, so that the ordinates are 
dropped at an angle Η. 
 [Solution]. For let ΒΕ and ΒΘ  be given,  and let a hyperbola be described 
whose transverse diameter will be ΒΕ, and the latus rectum of whose eidos will 
be ΘΒ, and where the ordinates to continued ΒΕ will be at an angle Η, and let it 
be the line ΑΒΓ for we have already described how this must be done [in Propo-
sition I.55]. Then let ΕΚ be drawn through Ε perpendicular to ΒΕ and equal to 
ΒΘ, and let another hyperbola ΔΕΖ be likewise described whose diameter is ΒΕ 
and the latus rectum of whose eidos is ΕΚ, and where the ordinates from the 
hyperbola will be dropped at a same angle Η. Then it is evident that Β and Ε are 
opposite hyperbolas, and there is one diameter for them, their latera recta  are 
equal. 
 

[Proposition ] 60 [Problem] 
 

 Given two straight lines bisecting each other, to describe about each of 
them opposite hyperbolas, so that the straight lines are their conjugate diame-
ters, and the diameter of one pair of opposite hyperbolas is equal in square to 
the eidos of the other pair, and likewise the diameter of the second pair of op-
posite hyperbolas is equal in square to the eidos of the first pair 106. 
 Let there be two given straight lines ΑΓ and ΔΕ bisecting each other, then 
it is required to describe opposite hyperbolas about each of them as the diame-
ters, so that ΑΓ and ΔΕ are conjugate in them, and ΔΕ is equal in square to the 
eidos [of the hyperbola] about ΑΓ, and ΑΓ is equal in square to the eidos [of 
the hyperbola] about ΔΕ. 
 [Solution]. Let pl.ΑΓΛ is equal to sq.ΔΕ, and let ΛΓ be perpendicular to 
ΓΑ. And given ΑΓ and ΓΛ are perpendicular to each other, let the opposite hy-
perbolas ΡΑΗ and ΘΓΚ be described whose transverse diameter will be ΓΑ , and 
whose latus rectum will be ΓΛ, and where the ordinates from the hyperbolas to 
ΓΑ will be dropped at the given angle [according to Proposition I.59], then ΔΕ 
will be a second diameter of the opposite hyperbolas [according to Definition 
11] for it is the mean proportional between sides of the eidos, and parallel to an 
ordinate it has been bisected at Β. Then again let pl.ΔΕΖ be equal to sq.ΑΓ, and 
let ΔΖ be perpendicular to ΔΕ. 

And given ΕΔ and ΔΖ situated perpendicular to each other, let the oppo-
site hyperbolas ΜΔΝ and ΟΕΞ be described whose transverse diameter will be ΔΕ 
, and the latus rectum of whose eidos will be ΔΖ. And where the ordinates from 
the hyperbolas will be dropped to ΔΕ at the given angle [according to Proposi-
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tion I.59], then ΑΓ will also be a second diameter of the hyperbolas ΜΔΝ and 
ΞΕΟ , and so ΑΓ bisects the parallels to ΔΕ between the hyperbolas ΡΑΗ and 
ΘΓΚ, and ΔΕ bisects the parallels to ΑΓ, and this is what was to make107. 
 And let such hyperbolas be called conjugate 108 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BOOK TWO 
 

Preface 
Apollonius greets Eudemius1.  

 
 If you are well, well good, and I, too fare pretty well. 
 I have sent  you my son Apollonius2 bringing you the second book of the 
Conic as was arranged by us. Go through it then carefully and acquaint those 
with it worthy of sharing in such things. And Philonides3, the geometer. I intro-
duced to you Fphesus, if ever he happen about Pergamum, acquaint him with it 
too. 
 

[Proposition] 1  
 

 If a straight line touch a hyperbola at its vertex,  and from it on both 
sides of the diameter a straight line is cut off equal in square to the quarter of 
the eidos, then the straight lines drawn from the center of the section to the 
ends thus taken on the tangent will not meet the section 4. 
 There be let there be a hyperbola whose diameter ΑΒ, vertex Γ, and the 
latus rectum ΒΖ, and let ΔΕ touch the section at Β, and let the square on ΒΔ and 
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ΒΕ each be equal to the quarter of the [eidos] pl.ΑΒΖ, and let ΓΔ and ΓΕ be 
joined and continued. 
 I say that they will not meet the section, 
 [Proof]. For, if possible, let ΓΔ meet the section at Η, and from Η let ΗΘ 
be dropped as an ordinate, therefore [according to Proposition I.17] it is parallel 
to ΔΒ. Since then as ΑΒ is to ΒΖ, so sq.ΑΒ is to pl.ΑΒΖ, but  sq.ΓΒ is equal to 
the quarter of sq.ΑΒ, and sq.BD is equal to the quarter of pl.ΑΒΖ, 
therefore as ΑΒ is to ΒΖ, so ΓΒ is to sq.ΔΒ, and sq.ΓΘ is to sq.ΘΗ. 
 And also [according to Proposition I.21] as ΑΒ is to ΒΖ, so pl.ΑΘΒ is to  
sq.ΘΗ, therefore as sq.ΓΘ is to sq.ΘΗ, so pl.ΑΘΒ is to sq.ΘΗ.  
 Therefore pl.ΑΘΒ is equal to sq.ΓΘ,  and this [according to Proposition 
II.6 of Euclid] is impossible. Therefore ΓΔ will not meet the section. Then 
likewise we could show that neither does ΓΕ, therefore ΓΔ and ΓΕ are asymptote 
of the section. 

 
[Proposition]  2 

 
 With the same suppositions it is to be shown that a strait line cutting the 
angle under the strait line ΔΓ and ΓΕ is not another asymptote5. 
 [Proof]. For, if possible, let ΓΘ be it, and let ΒΘ be drawn through Β paral-
lel to ΓΔ and let it meet ΓΘ as Θ, and let ΔΗ be made equal to ΒΘ and let ΗΘ be 
joined and continued to the points Κ, Λ, and Μ [of intersection with the hyper-
bola, its diameter ΓΒ and the  line ΓΕ, respectively].Since then ΒΘ and ΔΗ are 
equal and parallel, ΔΒ and ΘΗ are also equal and parallel.  
Since ΑΒ is bisected at Γ and ΒΛ added to it, [according to Proposition II.6 of 
Euclid] the sum of pl.ΑΛΒ and sq.ΓΒ is equal to sq.ΓΛ. 
 Likewise then since ΗΜ is parallel ΔΕ, and ΔΒ is equal to ΒΕ, therefore also 
ΗΛ is equal to ΛΜ. 
 And since ΗΘ is equal to ΔΒ, therefore ΗΚ is greater than ΔΒ. And also 
ΚΜ is greater than ΒΕ, since also ΛΜ greater than ΒΕ, therefore pl.ΜΚΗ is 
greater than pl.ΔΒΕ, which is greater than sq.ΔΒ. 
 Since then [according to Proposition II.1] as ΑΒ is to ΒΖ, so sq.ΓΒ is to 
sq.ΒΔ, but [according to Proposition I,21] as ΑΒ is to ΒΖ, so pl.ΑΛΒ is to sq.ΛΚ, 
and as sq.ΓΒ is to sq.ΒΔ, so sq. ΓΛ is to sq.ΛΗ, therefore also as sq.ΓΛ is to 
sq.ΛΗ, so pl.ΑΛΒ is to sq.ΛΚ. 
 Since then as whole sq.ΛΓ is to whole sq.ΛΗ, so subtracted part pl.ΑΛΒ is 
to subtracted part sq.ΛΚ, therefore also as sq.ΛΓ is to sq.ΛΗ, so remainder 
sq.ΓΒ is to remainder pl.ΜΚΗ, that is as sq.ΓΒ is to pl.ΜΚΗ, so sq.ΓΒ is to sq.ΔΒ. 
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Therefore sq.ΔΒ is equal to pl.ΜΚΗ, and this is impossible for it has been shown 
to be greater than it. Therefore ΓΘ is not an asymptote to the section. 
 

[Preposition] 3 
 

 If a straight line touches a hyperbola it will meet both asymptotes and it 
will be bisected at the point of contact, and the square on each of its segments 
will be equal to the quarter of the eidos corresponding to the diameter drawn 
through the point of contact 6. 
 Let there be the hyperbola ΑΒΓ, and its center Ε, and asymptotes ΖΕ and 
ΕΗ, and some straight line ΘΚ touch it at Β. 
 I say that ΘΚ continued will meet ΖΕ and ΕΗ. 
 [Proof]. For, if possible, let it not meet them, and let ΕΒ is joined and 
continued, and let ΕΔ be made equal to ΕΒ, therefore ΒΔ is a diameter. Then let 
sq.ΘΒ and sq.ΒΚ each be made equal to the quarter of the eidos corresponding 
to ΒΔ, and let ΕΘ and ΕΚ be joined. Therefore [according to Proposition II.1] 
they are asymptotes, and this is [according to Proposition II.2] is impossible for 
ΖΕ and ΕΗ are supposed asymptotes. Therefore ΚΘ continued will meet the 
asymptotesΕΖ and ΕΗ. 
 I say then also that sq.ΒΖ and sq.ΒΗ  will each be equal to the quarter of 
the eidos corresponding to ΒΔ. 
 [Proof]. For let it not be, but if possible, let sq.ΒΘ and sq. ΒΚ each be 
equal to the quarter of the eidos. Therefore [according to Proposition II.1] ΘΕ 
and ΕΚ are asymptotes, and [according to Proposition II.2] this is impossible. 
Therefore sq.ΖΒ and sq.ΒΗ will each equal to the quarter of the eidos corre-
sponding to ΒΔ. 
 

[Proposition] 4 [Problem] 
  

Given two straight lines containing an angle and a point within the angle, 
to describe through the point the section of a cone called hyperbola, so that 
the given straight lines are its asymptotes7.  
 Let there be two straight lines ΑΓ and ΑΒ containing a chance angle at 
Α, and some point Δ be given, and let it be required to describe through Δ a hy-
perbola with the asymptote ΓΑ and ΑΒ. 
 [Solution]. Let ΑΔ be joined and continued to Ε, and let ΑΕ be made equal 
to ΔΑ, and let ΔΖ be drawn through Δ parallel to ΑΒ, and let ΖΓ be made equal 
to ΑΖ, and let ΓΔ be joined and continued to Β, and let be contrived that pl.ΔΕ,Η 
is equal to sq.ΓΒ, and with ΑΔ continued let a hyperbola be described about it 
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through Δ, so that the ordinate equal in square to the [rectangular] planes ap-
plied to Η and increased by a figure similar to pl.ΔΕ,Η . Since then ΔΖ is parallel 
to ΒΑ, and ΓΖ is equal to ΓΑ, therefore ΓΔ is equal to ΔΒ, and sq.GB is equal to 
quadruple sq.ΓΔ. And sq.ΓΒ is equal to pl.ΔΕ,Η ,therefore sq.ΓΔ and sq.ΔΒ are 
each equal to the quarter of the eidos pl.ΔΕ,Η . Therefore ΑΒ and Α are asymp-
tote of the described hyperbola. 
 

[Proposition] 5 
 

 If the diameter of a parabola or a hyperbola bisect some straight line  
[within the section], the tangent to the section at the end of the diameter will 
be parallel to the bisected straight line 8. 
 Let there be the parabola or the hyperbola ΑΒΓ whose diameter is 
ΔΒΕ,and let ΖΒΗ touch the section, and let some straight line ΑΕΓ be drawn in 
the section making ΑΕ equal to ΕΓ. 
 I say that ΑΓ is parallel to ΖΗ. 
 [Proof]. For, if not let ΓΘ be drawn through parallel to ΖΗ and let ΘΛ be 
joined. Since then ΑΒΓ is a parabola or a hyperbola whose diameter is ΔΕ, and 
tangent ΖΗ, and ΓΘ is parallel to it, therefore [according to Propositions I.46 
and I.47] ΓΚ is equal to ΚΘ. But also ΣΕ is equal to ΕΑ. 
 Therefore ΑΘ is parallel to ΚΕ, and this is impossible for [according to 
Proposition I.22] continued it ΒΔ. 
 

[Proposition] 6 
 

 If the diameter of an ellipse or the circumference of a circle is bisects 
some straight line not through the center, the tangent to the section at the end 
of the diameter will be parallel to the bisected straight line 9 

Let there be an ellipse or the circumference of a circle whose diameter is 
ΑΒ, and let ΑΒ bisect ΓΔ, a straight line not through the center, at Ε. 
 I say that the tangent to the section at Α is parallel to ΓΔ. 
 [Proof]. For let it not be, but, if possible, let ΔΖ be parallel to the tangent 
at Α, therefore [according to Proposition I.47] ΔΗ is equal to ΖΗ. 
 But also ΔΕ is equal to ΕΓ, therefore ΓΖ is parallel to ΗΕ, and this is possi-
ble for if Η is the center of the section ΑΒ, and ΓΖ [according to Proposition 
I.23 will meet [the straight line] ΑΒ, and if it is not, suppose it to be Κ, and let 
ΔΚ be joined and continued to Θ, and let ΓΘ be joined. Since then ΔΚ is equal to 
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ΚΘ and also ΔΕ is equal to ΕΓ, therefore ΓΘ is parallel to ΑΒ.  But also ΓΖ, and 
this is impossible. Therefore the tangent at Α is parallel to ΓΔ. 

 
[Proposition] 7 

 
 If a straight line touches a section of a cone or the circumference of a cir-
cle, and a parallel to it is drawn in the section and bisected, the straight line 
joined the point of contact with the midpoint will be a diameter of the section 
10. 
 There be a section of a cone the circumference of a circle ΑΒΓ, and ΖΗ  
tangent to it, and ΑΓ parallel to ΖΗ and bisected at Ε, and let ΒΕ be joined. 
 I say that ΒΕ is a diameter of the section. 
 [Proof] . For let it not be, but, if possible, let ΒΘ be a diameter of the 
section. Therefore [according to Definition 4] ΑΘ is equal to ΘΓ, and this is not 
impossible for ΑΕ is equal to ΕΓ. 
 Therefore ΒΘ will not be a diameter of the section. Then likewise we could 
show that there is no other [diameter] than ΒΕ. 
 

[Proposition] 8 
 

 If a straight line meets a hyperbola at two point, continued both ways it 
will meet the asymptotes, the straight lines cut off on it by the section from 
the asymptotes will be equal 11. 
 Let there be the hyperbola ΑΒΓ and the asymptotes ΕΔ and ΔΖ, and let 
some straight line ΑΓ meet ΑΒΓ. 
 I say that continued both ways it will meet the asymptotes. 
 [Proof]. Let ΑΓ be bisected at Η and let ΔΗ be joined. Therefore [accord-
ing to Proposition I.47] it is a diameter of the section, therefore the tangent at 
Β [according to Proposition II.5] is parallel to ΑΓ. Then let ΘΒΚ be the tangent, 
then it will [according to Proposition II,3] meet ΕΔ and ΔΖ. Since then ΑΓ is par-
allel to ΚΘ, and ΚΘ meets ΔΚ and ΔΘ, therefore also ΑΓ will meet ΔΕ and ΔΖ. 
 Let it meet them at Ε and Ζ, and [according to Proposition II.3] ΘΒ is 
equal to ΒΚ, therefore also ΖΗ is equal to ΗΕ. And so also ΓΖ is equal to ΑΕ. 
 

[Proposition] 9 
 

 If a straight line meeting the asymptote is bisected is by the hyperbola, it 
will touch the section one point only 12. 
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 For let ΓΔ meeting the asymptotes ΓΑ, ΑΔ be bisected by the hyperbola 
at Ε. 
 I say that it touches the hyperbola at no other point. 
 [Proof]. For, if possible, let meet touch it at as Β. Therefore [according to 
Proposition II.8] ΓΕ is equal to ΒΔ, and this is impossible  for ΓΕ is supposed 
equal to ΕΔ. Therefore it will not touch the section as another point. 
 

[Proposition] 10 
  
 If some straight line cutting the hyperbola meet both asymptotes, the 
rectangular plane under the straight lines cut off between the asymptotes and 
the section is equal to the quarter of the eidos corresponding to the diameter 
bisecting the straight lines drawn parallel to the drawn straight line 13. 
 Let there be the hyperbola ΑΒΓ and let ΔΕ, ΕΖ be its asymptotes, and let 
some straight line ΔΖ be drawn cutting the section and the asymptotes, and let 
ΑΓ be bisected at Η and let ΗΕ be joined, and let ΕΘ be made equal to ΒΕ, and 
let ΒΜ be drawn from Β perpendicular to ΘΕΒ,therefore [according to the 
porism to Proposition I.51] ΒΘ is a diameter and ΒΜ is the latus rectum. 
 I say that pl.ΔΑΖ is equal to the quarter of pl.ΘΒΜ, then likewise also 
pl.ΔΓΖ is equal to the quarter of pl.ΘΒΜ. 
 [Proof]. For let ΚΛ be drawn through Β tangent to the section, therefore 
[according to Proposition II.5] it is parallel to ΔΖ. And since it has been shown 
[in Proposition II.1] that as ΘΒ is to ΒΜ, so sq.ΕΒ is to sq.ΒΚ, and sq.ΕΗ is to 
sq.ΗΔ, and [according to Proposition I.21] as ΘΒ is to ΒΜ, so pl.ΘΗΒ is to 
sq.ΗΑ, therefore as sq.ΕΗ is to sq.ΗΔ, so pl.ΘΗΒ is to sq.ΗΑ. 
 Since then as whole sq.ΕΗ is to whole sq.ΗΔ, so subtracted part of pl.ΘΗΒ 
is to subtracted part of sq.ΑΗ, therefore also [according to Proposition II.5, II.6, 
and V.19 of Euclid] as remainder sq.ΕΒ is to remainder pl.ΔΑΖ, so sq.ΕΗ is to 
sq.ΗΔ or as remainder sq.ΕΒ is to remainder pl.ΔΑΖ, so sq.ΕΒ is to sq.ΒΚ. 
 Therefore pl.ΖΑΔ is equal to sq.ΒΚ. 
 Then likewise it could be shown also that pl.ΔΓΖ is equal to sq.ΒΛ, there-
fore also  pl.ΖΑΔ is equal to pl.ΔΓΖ. 
 

[Proposition] 11 
 

 If some straight line cut each of the straight lines containing the angle 
that is adjacent to the angle which contains the hyperbola, then this straight 
line will meet the section at one point only, and the rectangular plane under the 
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straight lines cut off [on this straight line] between the containing straight lines 
and the section will be equal to the quarter of the eidos corresponding to the 
diameter drawn parallel to the cutting straight line 14. 
 Let there be a hyperbola whose asymptotes are ΓΑ, ΑΔ, and let ΔΑ be 
continued to Ε, and through some point Ε let ΕΖ be drawn cutting ΕΑ and ΑΓ 
[continued as necessary]. 
 Now it is evident that it meets the section at one point only for the 
straight line drawn through Α parallel to ΕΖ as ΑΒ will cut the angle ΓΑΔ and 
[according to Proposition II.2] will meet the section and [according to the 
porism to Proposition I.51] be its diameter, therefore [according to Proposition 
I.26] ΕΖ will meet the section as one point only. Let it meet it as Η. 
 I say then also that pl.ΕΗΖ is equal to sq.ΑΒ . 
 [Proof]. For let ΘΗΛΚ be drawn as an ordinate through Η, therefore the 
tangent through Β [according to Proposition II.5] is parallel ΗΘ. Let it be ΓΔ. 
Since then [according to Proposition II.3] ΓΒ is equal to ΒΔ, therefore the ratio 
sq.ΓΒ or pl.ΓΒΔ to sq.ΒΑ is compounded of [the ratios] ΓΒ to ΒΑ and ΔΒ to ΒΑ. 
But as ΓΒ is to ΒΑ, so ΘΗ is to ΗΖ, and as ΔΒ is to ΒΑ, so ΗΚ is to ΗΕ, therefore 
the ratio sq.ΓΒ to sq.ΒΑ is compounded of [the ratios] ΘΗ to ΗΖ and ΚΗ to ΗΕ. 
 But also the ratio pl.ΚΗΘ to pl.ΕΗΖ is compounded of [the ratios] ΘΗ to 
ΗΖ and sq.KH to HE, therefore as pl.ΚΗΘ is to pl.ΕΗΖ, sq.ΓΒ is to sq.ΒΑ. 
Alternately as pl.ΚΗΘ is to sq.ΓΒ, so pl.ΕΗΖ is to sq.ΒΑ. 
 But it was shown [in Proposition II.10] that pl.ΚΗΘ is equal to sq.ΓΒ, 
therefore also pl.ΕΗΖ is equal to sq.ΑΒ. 
 

[Proposition] 12 
 

 If two straight lines at chance angles are drawn to the asymptotes from 
some point of those on the section, and parallels are drawn to two straight lines 
from some point of those on the section, then the rectangular plane contained 
by the parallels will be equal to that contained by those straight lines to which 
they were drawn parallel15. 

Let there be a hyperbola whose asymptotes are ΑΒ and ΒΓ, and let some 
point Δ be taken on the section, and from it let ΔΕ and ΔΖ be dropped [at 
chance angles] to ΑΒ and ΒΓ, and let some other point Η on the section be 
taken, and through Η let ΗΘ and ΗΚ be drawn parallel to ΕΔ and ΔΖ. 
 I say that pl.ΕΔΖ is equal to pl.ΘΗΚ. 
 [Proof]. For let ΔΗ be joined and continued to Α and Γ. Since then 
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[according to Proposition II.8] pl.ΑΔΓ is equal to pl.ΑΗΓ, therefore as ΑΓ is to 
ΑΔ, so ΔΓ is to ΓΗ. 
 But as ΑΗ is to ΑΔ, so ΗΘ is to ΕΔ, and as ΔΓ is to ΓΗ, so ΔΖ is to ΗΚ, 
therefore as ΗΘ is to ΔΕ, so ΔΖ is to ΗΚ. 
 Therefore pl.ΕΔΖ is equal to pl.ΘΗΚ. 
 

[Proposition] 13 
 

 If in the place bounded by the asymptotes and the section some straight 
line is drawn parallel to one of the asymptote, it will meet the section at one 
point only16 . 
 Let there be a hyperbola whose asymptote are ΓΑ and ΑΒ, and let some 
point Ε be taken [in the place bounded by asymptotes and the section], and 
through it let ΕΖ be drawn parallel to ΑΒ. 
 I say that it will meet the section. 
 [Proof]. For, if possible, let it not meet it, and let some point Η on the 
section be taken, and through Η let ΗΓ and ΗΘ be drawn parallel to ΓΑ and ΑΒ, 
and let pl.ΓΗΘ is equal to pl.ΑΕΖ, and let ΑΖ be joined and continued, then 
[according to Proposition II.2] it will meet the section. Let it meet it as Κ, and 
through K parallel to ΓΑ and ΑΒ let ΚΛ and ΚΔ be drawn, therefore 
[according to Proposition II.12] pl.ΓΗΘ is equal to pl.ΛΚΔ. 
 And it is supposed that also pl.ΓΗΘ is equal to pl.ΑΕΖ, therefore pl.ΛΚΔ 
or pl.ΚΛΑ is equal to pl.ΑΕΖ, and this is impossible for both ΚΛ is greater than 
ΕΖ, and ΛΑ is greater than ΑΕ. 
 Therefore ΕΖ will meet the section. Let it meet it at Μ. 
 I say then that it will not meet it  at any other point. 
 [Proof]. For, if possible,  let it also meet it at Ν, and through Μ and Ν let 
ΜΞ and ΝΒ be drawn parallel to ΓΑ. Therefore [according to Proposition II.12] 
pl.ΕΜΞ is equal to pl.ΕΝΒ, and this is impossible. Therefore it will not meet the 
section at another point. 
 

[Proposition] 14 
 

 The asymptote and the section, if continued indefinitely, draw nearer to 
each other, and they reach a distance less than any given distance 17. 

Let there be a hyperbola whose asymptotes are ΑΒ and ΑΓ, and a given 
distance Κ. 
I say that ΑΒ and ΑΓ and the section, if continued, draw  nearer to each other 
and will reach a distance less than Κ. 
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 [Proof]. For let ΕΘΖ and ΓΗΔ be drawn parallel to the tangent, and let ΑΘ 
be joined and continued to Ξ. Since then [according to Proposition II.10] pl.ΓΗΔ 
is equal to pl.ΖΘΕ, therefore as ΔΗ is to ΖΘ, so ΘΕ is to ΓΗ. 
 But [according to Proposition VI.4 of Euclid] ΔΑ is greater than ΖΘ, there-
fore also ΘΕ is greater than ΓΗ. 
 Then likewise we could show that the succeeding straight lines are less. 
 Then let the distance ΖΛ be taken less than Κ, and through Λ let ΛΝ be 
drawn parallel to ΑΓ, therefore it [according to Proposition II.12 ] will meet the 
section. Let it meet it at Ν, and through Ν let ΜΝΒ be drawn parallel to ΕΖ 
therefore ΜΝ is equal to ΕΛ, and so ΜΝ is less than Κ. 

 
Porism 

 Then from this if is evident that ΑΒ and ΑΓ are nearer than all asymptotes 
to the section, and the angle under ΒΑ, ΑΓ is clearly less than that under other 
asymptote to the section 18. 
 
 
 

[Proposition] 15 
 
 The asymptotes of opposite hyperbolas are common19. 
 Let there be opposite hyperbolas whose diameter is ΑΒ and center Γ. 
 I say the asymptote of the hyperbolas Α and Β are common. 
 [Proof]. Let ΔΑΕ and ΖΒΗ be drawn tangent to the hyperbola through 
Α and Β, they [according to Proposition I.44] are therefore parallel. Then let 
each of [the straight lines] ΔΑ, ΑΕ, ΕΒ, and ΒΗ be cut off equal in square to the 
quarter of the eidos applied to ΑΒ, therefore ΔΑ is equal to ΑΕ, is equal to ΖΒ, 
and is equal to ΒΗ. 
 Then let ΓΔ, ΓΕ, ΓΖ, and ΓΗ be joined. Then it is evident that ΔΓ is in a 
straight line with ΓΗ, and ΓΕ with ΓΖ because of the parallel. Since then it is a 
hyperbola whose diameter is ΑΒ and tangent ΔΕ, and ΔΑ and ΑΕ are each equal 
in square to the quarter of the eidos applied to ΑΒ, therefore ΔΓ  and ΓΕ are as-
ymptotes. For the same reasons ΖΓ and ΓΗ are also asymptotes to hyperbola Β.  
Therefore the asymptote of opposite hyperbola are common. 
 

[Proposition] 16 
 
 If in opposite hyperbola some straight line is drawn cutting in the straight 
lines containing the angle adjacent to the angles containing the sections, it will 
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meet each of the opposite hyperbola in one point only, and the straight lines 
cut off on it by the hyperbola from the asymptotes will be equal 20 . 
 Let there be the opposite hyperbolas Α and Β whose center is Γ and as-
ymptotes ΔΓΗ and ΕΓΖ, and let some straight line Θ be drawn trough, cutting 
each of ΔΓ and ΓΖ. 
 I say that continued it will meet each of the hyperbolas in one point only. 
 [Proof]. For since ΔΓ and ΓΕ are asymptotes of the hyperbola Α, and some 
straight line ΘΚ has been drawn across cutting both of straight lines containing 
the adjacent angle ΔΓΖ, therefore [according Proposition II.11] ΘΚ continued will 
meet the section. Then likewise also Β. Let it meet them at Λ and Μ. Let ΑΓΒ be 
drawn through Γ parallel to ΛΜ, therefore [according to Proposition II.11] 
pl.ΚΛΘ is equal to sq.ΑΓ, and pl.ΘΜΚ is equal to sq.ΓΒ. 
 And so also pl.ΚΛΘ is equal to pl.ΘΜΚ, and ΛΘ is equal to ΚΜ. 
 
 
 

[Proposition] 17 
 

 The asymptotes of conjugate opposite hyperbolas are common 21. 
 Let there be conjugate opposite hyperbolas whose conjugate diameters 
are ΑΒ and ΓΔ, and whose center is Ε. 
 I say that their asymptotes are common. 
 [Proof]. For let ΖΑΗ, ΗΔΘ, ΘΒΚ, and ΚΓΖ be drawn through [the points] 
Α, Β, Γ, and Δ touching the hyperbolas, therefore ΖΗΘΚ [according to Proposi-
tion I.44] is a parallelogram. Then let ΖΕΘ and ΚΕΗ be joined, therefore they are 
diagonals of the parallelogram, and they are all bisected at Ε. And since the fig-
ure on ΑΒ [according to Proposition I.60] is equal to sq.ΓΔ, and ΓΕ is equal to 
ΖΔ, therefore each of sq.ΖΑ, sq.ΑΗ, sq.ΚΒ, and sq.ΒΘ is equal to the quarter of 
the eidos corresponding to ΑΒ. Therefore ΖΕΘ and ΚΕΗ [according to Proposi-
tion II.1] are asymptotes of hyperbolas Α and Β. Then likewise we could show 
that same straight lines are also asymptotes of the hyperbolas Γ and Δ. There-
fore the asymptotes of conjugate opposite hyperbolas are common. 
 

[Proposition] 18 
 

 If a straight line meeting one of the conjugate opposite hyperbolas when 
continued both ways, falls outside the section, it will meet both of the adjacent  
hyperbolas at one point only 22. 
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 Let there be the conjugate opposite hyperbolas Α, Β, Γ, and Δ, and let 
some straight line ΕΖ meet the hyperbola Γ and continued both ways fall outside 
the section. 
 I say that it will meet both hyperbolas Α and Β at one point only. 
 [Proof]. For let ΗΘ and ΚΛ be asymptotes of the hyperbolas. Therefore 
[according to Proposition II.3] ΕΖ meets both ΗΘ and ΚΛ. Then it is evident that 
it will {according to Proposition II.16] also meet the hyperbolas Α and Β at one 
point only.  
 

[Proposition] 19 
 

 If some straight line is drawn touching one of the conjugate opposite hy-
perbolas at random, it will meet the adjacent hyperbolas and will be bisected at 
the point of contact 23. 
 Let there be the conjugate opposite hyperbolas Α, Β, Γ, and Δ, and let 
some straight line ΕΓΖ touch it at Γ. 
 I say that continued it will meet the hyperbolas Α and Β and will  be bi-
sected at Γ. 
  It is evident now that it will [according to Proposition II.18] meet the hy-
perbolas Α and Β, let it meet them at Η and Θ. 
 I say that ΓΗ is equal to ΓΘ. 
        [Proof]. For let the asymptotes of the hyperbolas ΚΛ and ΜΝ be drawn. 
Therefore [according to Proposition II.16] ΕΗ is equal to ΖΘ, and [according to 
Proposition II.3] ΓΕ is equal to ΓΖ, and ΓΗ is equal to ΓΘ. 
 

[Proposition] 20 
 

 If a straight line touches one of conjugate opposite hyperbolas, and two  
straight lines are drawn through their center, one through the point of contact, 
and one parallel to the tangent until it meet one of the adjacent hyperbolas, 
then the straight line touching the section at the point of meeting will be paral-
lel to the straight line drawn through the point of contact and the center, and 
those through the point of contact and the center will be conjugate diameters 
of the opposite hyperbolas 24. 
 Let there be conjugate opposite hyperbolas whose conjugate diameters 
are ΑΒ and ΓΔ, and center ΧΧ, and let ΕΖ be drawn touching the hyperbola Α, 
and continued let it meet ΓΧ at Τ, and let ΕΧ be joined and continued to Ξ, and 
through Χ let ΧΗ be drawn parallel to ΕΖ, and through Η let ΘΗ be drawn touch-
ing the section. 
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 I say that ΘΗ is parallel to ΧΕ, and ΗΟ and ΕΞ are conjugate diameters. 
 [Proof]. For let ΚΕ, ΗΛ, and ΓΡΠ be drawn as ordinates, and let ΑΜ and 
ΓΝ be the latera recta. Since then [according to Proposition I.60] as ΒΑ is to 
ΑΜ, so ΝΓ is to ΓΔ, but [according to Proposition I.37] as ΒΑ is to ΑΝ, so 
pl.ΧΚΖ is to sq.ΚΕ, and as ΝΓ is to ΓΔ, so sq.ΗΛ is to pl.ΧΛΘ, therefore also as 
pl.ΧΚΖ is to sq.ΕΚ, so sq.ΗΛ is to pl.ΧΛΘ. 
 But the ratio pl.ΧΚΖ to sq.ΕΚ is compounded of [the ratios] ΧΚ to ΚΕ and 
ΖΚ to ΚΕ, and the ratio sq.ΗΛ to pl.ΧΛΘ is compounded of [the ratios] ΗΛ to 
ΛΧ and ΗΛ to ΛΘ, therefore the ratio compounded of [the ratios] ΧΚ to ΚΕ 
and ΖΚ to ΚΕ is the same ratio compounded of [the ratios] ΗΛ to ΛΧ and ΗΛ to 
ΛΘ, and of these as ΖΚ is to ΚΕ, so HL is to ΛΧ, for each of ΕΚ, ΚΖ, and ΖΕ is 
parallel to each of ΧΛ, ΛΗ , and ΗΧ, respectively.  
 Therefore as remainder ΧΚ is to ΚΕ, so ΗΛ is to ΛΘ. 
 Also the sides of equal angles at Κ and L are proportional, therefore the 
triangle ΕΚΧ is similar to the triangle ΗΘΛ, and will have equal angles corre-
sponding to the subtend sides.  
 Therefore the angle ΕΧΚ is equal to the angle ΛΗΘ. 
 But also the angle ΚΧΗ is equal to the angle ΛΗΧ, and therefore the angle 
ΕΧΗ is equal to the angle ΘΗΧ. Therefore ΕΧ is parallel to ΗΘ. 
           Then let it be contrived that as ΠΗ is to ΗΡ, so ΘΗ is to Σ, therefore Σ is 
the half of the latus rectum of the ordinates to the diameter ΗΟ in hyperbolas Γ 
and Δ [according to Proposition I.51]. Since ΓΔ is the second diameter of the 
hyperbolas Α and Β, and ΕΤ meets it, therefore pl.ΤΧ,ΕΚ is  equal to sq.ΓΧ for if 
we draw from Ε a parallel to ΚΧ, the rectangular plane under ΤΧ and the 
straight line cut off by the parallel will [according to Proposition  I.38] be equal 
to sq.ΓΧ. 
 And therefore [according to Proposition VI.20 of Euclid] as ΤΧ is to ΕΚ, 
so sq.ΤΧ is to sq.ΧΓ.  
 But as ΤΧ is to ΕΚ, so ΤΖ is to ΖΕ or [according to Proposition VI.1 of 
Euclid] as ΤΧ is to ΕΚ, so the triangle ΤΧΖ is to the triangle ΕΖΧ, and [according 
to Proposition VI.19 of Euclid] as sq.ΤΧ is to sq.ΓΧ, so the triangle ΧΤΖ is to the 
triangle ΧΓΠ or [according to Proposition II.1] as sq.ΤΧ is to sq.ΓΧ, so the 
triangle ΧΤΖ is to the triangle ΗΘΧ. Therefore as the triangle ΤΧΖ is to the tri-
angle ΕΖΧ, so the triangle ΤΖΧ is to the triangle ΧΗΘ. 
 Therefore the triangle ΗΘΧ is equal to the triangle ΧΕΖ. But they also 
have the angle ΘΗΧ is equal to the angle ΧΕΖ for ΕΧ is parallel to ΗΘ, and ΕΖ to 
ΗΧ. Therefore the sides of the equal angles [according to Proposition VI.15 of 
Euclid] are reciprocally proportional. Therefore as ΗΘ is to ΕΧ, so ΕΖ is to ΗΧ, 
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therefore pl.ΘΗΧ is equal to pl.ΧΕΖ. And since as Σ is to ΘΗ, so ΡΗ is to ΗΠ, and 
as ΡΗ is to ΗΠ, so ΧΕ is to ΕΖ for they are parallel, therefore also as Σ is to ΘΗ, 
so ΧE is to ΕΖ. 
 But with ΧΗ taken as common height, as Σ is to ΘΗ , so pl.Σ,ΧΗ is to 
pl.ΘΗΧ, and as ΧΕ is to ΕΖ, so sq.ΧΕ is to pl.ΧΕΖ. And therefore as pl.Σ,ΧΗ is to 
pl.ΘΗΧ, so sq.ΧΕ is  to pl.ΧΕΖ. 
 Alternately as pl.Σ,ΗΧ is to sq.ΕΧ, so pl.ΘΗΧ is to pl.ΖΕΧ. 
 But pl.ΘΗΧ is equal to pl.ΧΕΖ, therefore also pl.Σ,ΗΧ is equal to sq.ΕΧ. 
 And pl.Σ,ΗΧ is the quarter of the eidos corresponding to ΗΟ for ΗΧ is 
equal to the half of ΗΟ, and Σ is the latus rectum, sq.ΕΧ is equal to the quarter 
of sq.ΕΞ for ΕΧ is equal to ΧΞ. 
 Therefore sq.ΕΧ is equal to the eidos corresponding to ΗΟ. Then likewise 
we could show also that ΗΟ is equal in square to the eidos corresponding to ΕΞ. 
Therefore ΕΞ and ΗΟ are conjugate diameters of the opposite hyperbolas 
Α, Β, Γ, and Δ. 
 
 
 

[Proposition] 21 
 
 Under the same supposition it is to be shown that the point of meeting of 
the tangents is on one of the asymptotes 25. 
 Let there be conjugate opposite hyperbolas, whose diameters are ΑΒ and 
ΧΔ, and let ΑΕ and ΕΓ be drawn tangent. 
 I say that Ε is on the asymptote. 
 [Proof]. For since sq.ΓΧ is equal to the quarter of the eidos corresponding 
to ΑΒ [according to Proposition I.60], and [according to Proposition II.17] sq.ΑΕ 
is equal to ΓΧ,therefore also sq.ΑΕ is equal to the quarter of the eidos corre-
sponding to ΑΒ. Let ΕΧ be joined, therefore [according to Proposition II.1] ΕΧ is 
an asymptote, therefore [the point] Ε is on the asymptote. 
 

[Proposition] 22 
 
 If in conjugate opposite hyperbolas a radius is drawn to any of the hyper-
bolas, and a parallel is drawn to it meeting one of adjacent hyperbolas and 
meeting the asymptotes, then the rectangular plane under the segments 
continued between the section and the asymptotes on the straight line drawn is 
equal to the square on the radius26. 
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 Let there be conjugate opposite hyperbolas Α, Β, Γ, and Δ, and let there 
be the asymptotes of these hyperbola ΧΕΖ and ΧΗΘ, and from the center Χ let 
some straight line ΧΓΔ be drawn across, and let ΘΕ be drawn parallel to it cut-
ting both adjacent hyperbolas and the asymptotes. 
 I say that pl.ΕΚΘ is equal to sq.ΓΧ. 
 [Proof]. Let ΚΛ be bisected at Μ, and let ΜΧ be joined and continued 
therefore ΑΒ is the diameter of the hyperbolas Α and Β [according to the porism 
to Proposition I.51]. And since the tangent at Α [according to Proposition II.5] 
is parallel to ΕΘ, therefore ΕΘ [according to Proposition I.17] 
has been dropped as an ordinate to ΑΒ. And center is Χ, therefore ΑΒ and ΓΔ 
are conjugate diameter [according to Definition 6] .Therefore sq.ΓΧ [according 
to Proposition I.60] is equal to the quarter of the eidos corresponding to ΑΒ. 
And pl.ΘΚΕ [according to Proposition II.10] is equal to the quarter of the eidos 
corresponding to ΑΒ, therefore also pl.ΘΚΕ is equal to sq.ΓΧ. 
 

[Proposition] 23 
 

 If in conjugate opposite hyperbolas some radius is drawn to any of the 
hyperbola, and a parallel is drawn to it meeting three adjacent hyperbolas, 
then the rectangular plane under the segments continued between the three 
hyperbolas on the straight line  drawn is twice the square on the radius27.  
 Let there be the conjugate opposite hyperbolas Α, Β, Γ, and Δ, and let the 
center of the section be Χ, and from Χ let some straight line ΓΧ be drawn to 
meet any one of the hyperbolas, and let ΚΛ be drawn parallel to ΓΧ cutting 
three adjacent hyperbolas. 
 I say that pl.ΚΜΛ is equal to double sq.ΓΧ. 
 [Proof]. Let the asymptotes to the hyperbolas, ΕΖ and ΗΘ, be drawn, 
therefore [according to Proposition II.22] sq.ΓΧ is equal to pl.ΘΜΕ and [accord-
ing to Proposition II.11] is equal to pl.ΘΚΕ. And the sum of pl.ΘΜΕ and pl.ΘΚΕ is 
equal to pl.ΛΜΚ because of the straight lines on the ends[according to Proposi-
tions II.8 and II.16] being equal. Therefore also pl.ΛΜΚ is equal to double sq.ΓΧ. 
 

[Proposition] 24 
 

 If two straight lines meet a parabola each at two points, and if a point of 
meeting of neither one of them is contained by the points of meeting of the 
other, then the straight lines will meet each other outside the section 28. 
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 Let there be the parabola ΑΒΓΔ, and let ΑΒ and ΓΔ meet ΑΒΓΔ, and let a 
point of meeting of neither of them be contained by the points of meeting of 
the other. 
 I say that the straight lines continued will meet each other. 
 [Proof]. Let the diameters of the section, ΕΒΖ and ΗΓΘ, be drawn through 
Β and Γ,therefore [according to the porism to Proposition I.51] they are parallel 
and each one cut the section [according to Proposition I.26] at one point only. 
Then let ΒΓ be joined, therefore the sum of the angle ΕΒΓ and ΒΓΗ is equal to 
two right angles, and ΔΓ and ΒΑ continued make the angles less than two right 
angles. Therefore [according to Proposition I,10, and  Euclid’s Postulate 5] they 
will meet each other outside the section. 
 

[Proposition] 25 
  
 If two straight lines meet a  hyperbola each at two points, and if a point 
of meeting of neither of them is contained by the points of meeting of the 
other, then the straight lines will meet each other outside the section, but 
within the angle containing the section 29. 
 Let there be a hyperbola whose asymptotes are ΑΒ and ΑΓ, and let 
ΕΖ and ΗΘ cut the section, and let a point of meeting of neither of them be 
contained by the points of meeting of the other. 
 I say that ΕΖ and ΗΘ continued will meet outside the section, but within 
the angle ΓΑΒ. 
 [Proof]. For let ΑΖ and ΑΘ be joined and continued and let ΖΘ be joined. 
And since ΕΖ and ΗΘ continued cut the angles ΑΖΘ and ΑΘΖ, and mentioned 
angles [according to Proposition I.17 of Euclid] are less than two right angles, 
and ΕΖ and ΗΘ continued will meet each other outside the section but within 
the angle ΒΑΓ. 
 Then we could likewise show it, even if ΕΖ and ΗΘ are tangents to the 
sections. 
 

[Proposition] 26 
 

 If in an ellipse and in the circumference of a circle two straight lines not 
through the center cut each other, then they do not bisect each other 30. 
 [Proof]. For, if possible, in the ellipse for in the circumference of a circle 
let ΓΔ and ΕΖ not through the center bisect each other at Η and let Θ be the 
center of the section, and let ΗΘ be joined and continued to Α and Β. 
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 Since then ΑΒ is a diameter bisecting ΕΖ, therefore [according to Proposi-
tion II.6] the tangent at Α is parallel to ΕΖ. We could then likewise show that it 
also parallel to ΓΔ. And so also ΕΖ is parallel to ΓΔ. And this is impossible. There-
fore ΓΔ and ΕΖ do not bisected each other. 
 

[Proposition] 27 
 

 If two straight lines touch an ellipse or circumference of a circle, and if 
the straight line joining the points of contact is through the center of the sec-
tion, the tangents will be parallel, but if not, they will meet on the same side of 
the center 31. 
 Let there be the ellipse or the circumference of a circle ΑΒ, and let ΓΑΔ 
and ΕΒΖ touch it, and let ΑΒ be joined, and first let it be through the center. 
 I say that ΓΔ is parallel to ΕΖ. 
 [Proof]. For since ΑΒ is a diameter of the section, and ΓΔ touches it at 
Α, therefore [according to Proposition I.17] ΓΔ is parallel to the ordinates to ΑΒ. 
Then or the same reasons ΒΖ is also parallel to same ordinate. Therefore 
ΓΔ is also parallel to ΕΖ.Then let ΑΒ not be through the center as in the second 
diagram, and let the diameter ΑΘ be drawn, and let ΚΘΛ be drawn tangent 
through Θ, therefore ΚΛ is parallel to ΓΔ. Therefore ΕΖ continued will meet ΓΔ 
on the same side of the center as ΑΒ. 
 

[Proposition] 28 
 

 If in a section of a cone or in the circumference of a circle some straight 
line bisects two parallel straight lines, then it will a diameter of the section 32. 
  Let ΑΒ and ΓΔ, two parallel straight lines in a conic section, bisected at Ε 
and Ζ, and let ΕΖ be joined and continued. 

I say that it is a diameter of the section. 
[Proof]. For if not,  let ΗΖΘ be so if possible. Therefore the tangent at Η 

[according  to Proposition II.5 and II,6] is parallel to ΑΒ. And so the same 
straight line is parallel to ΓΔ. And ΗΘ is a diameter, therefore [according to 
Definition 4] ΓΘ is equal to ΘΔ, and this is impossible for it is supposed that ΓΕ 
is equal to ΕΔ. Therefore ΗΘ is not a diameter. Then likewise we could show that 
there is no other except ΕΖ. Therefore ΕΖ will be a diameter  of the section. 
 

        [Proposition] 29  
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 If in a section of a cone or in the circumference of a circle two tangents  
meet, the straight line, drawn from their t point of meeting to the midpoint of 
the straight line  joining the points of contact is a diameter of the section 33 .  
  Let there be a section of a cone or the circumference of a circle to which 
let ΑΒ and ΑΓ , meeting at Α, be drawn tangent, and let ΒΓ be joined and bi-
sected at Δ, and let ΑΔ be joined. 
 I say that it is a diameter of the section. 
 [Proof]. For, if possible, let ΔΕ be a diameter, and let ΕΓ be joined, then it 
will cut the section [according to Propositions I.5 and I.36]. Let it cut it at Ζ, 
and through Ζ let ZKH be drawn parallel to ΓΔΒ. Since then ΓΔ is equal to ΔΒ, 
also ΖΘ is equal to ΘΗ. 
 And since the tangent at Λ is parallel to ΒΓ [according to Propositions 
II.5 and II.6], and ΖΗ is also parallel to ΒΓ, therefore also ΖΗ is parallel to the 
tangent at Λ. Therefore [according to Propositions I.46 and I.47] ΖΘ is equal to 
ΘΚ, and this is impossible. Therefore ΔΕ is not a diameter. Then likewise we 
could show that there is no other except ΑΔ. 
 

[Proposition] 30 
                          

 If two straight lines tangent to a section of a cone or to the circumfer-
ence of a circle meet, the diameter drawn from the point of meeting will bisect 
the straight line joining the points of contact 34.                           
 Let there be the section of a cone or the circumference of a circle ΒΓ, and 
let two tangents ΒΑ and ΑΓ be drawn to their meeting at Α, and let ΒΓ be 
joined, and let ΑΔ be drawn through Α as a diameter of the section. 
 I say that ΔΒ is equal to ΔΓ. 
 [Proof]. For let it not be, but, if possible, let ΒΕ be equal to ΕΓ, and let 
ΑΕ be joined, therefore [according to Proposition II.29] ΑΕ is a diameter of the 
section. But ΑΔ it also the diameter, and this is impossible.  
 For if the section is an ellipse, Α at which the diameters meet each other, 
will be a center outside the section, and this is impossible, and if the section is a 
parabola the diameters [according to the porism to Proposition I.51] meet each 
other, and if is a hyperbola, and ΒΑ and ΑΓ meet the section without containing 
one another’ points of meeting, then the center is within the angle containing 
the hyperbola [according to Proposition II.25], but it is also on it for it has been 
supposed a center since ΔΑ and ΑΕ are diameter [according to the porism to 
Proposition I.51] and this is impossible. Therefore ΒΕ is not equal to ΕΓ. 
 

[Proposition] 31 
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 If two straight line touch each of the opposite hyperbolas, then if the 
straight line joining the points of contact falls through the center, the tangents 
will be parallel, but if not, they will meet on the same side as the center 35 .  
 Let there be the opposite hyperbolas Α and Β, and let ΓΑΔ and ΕΒΖ be 
tangent to them at Α and Β, and let the straight line joined from Α to Β fall first 
through the center of the hyperbola. 
 I say that ΓΔ is parallel to ΕΖ. 
 [Proof]. For since they are opposite hyperbolas for  which ΑΒ is a diame-
ter, and ΓΔ touches one of them at Α, therefore the straight line drawn through 
Β parallel to ΓΔ [according to Proposition I.44] touches the section. But ΕΖ also 
touches it, therefore ΓΔ is parallel ΕΖ. 
 Then let the straight line from Α to Β not be through the center of the 
hyperbolas, and let ΑΗ be drawn as a diameter of the hyperbolas, and let ΘΚ be 
tangent to the section, therefore ΘΚ is parallel to ΓΔ, and since ΕΖ and ΘΚ 
touch a hyperbola, therefore they [according to Proposition II.25] will meet. 
And ΘΚ is parallel to ΓΔ, therefore also ΓΔ and ΕΖ continued will meet. And it is 
evident that they are on the same side as the center. 
 

[Proposition] 32 
 

 If straight lines meet each of the opposite hyperbolas, at one point when 
touching or at two points when cutting, and, when continued,  the straight lines 
meet, then their point of meeting will be in the angle adjacent to the angle con-
taining the hyperbola36. 
 Let there be opposite hyperbolas and ΑΒ and ΓΔ either touching the op-
posite hyperbolas at one point or cutting them at two points, and let them 
meet when continued. 
 I say that their point of meeting will be in the angle adjacent to the angle 
containing the section. 
 [Proof]. Let ΖΗ and ΘΚ be asymptotes to the hyperbolas, therefore ΑΒ 
continued [according to Proposition II.8] will meet the asymptotes. Let it meet 
them at Θ and Η. And since ΖΚ and ΘΗ are supposed as meeting, it is evident 
that either they will meet in the place under the angle ΘΛΖ or in that under the 
angle ΚΛΗ. Likewise also if they touch [according to Proposition II.3]. 
  

[Proposition] 33 
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Let them be the opposite hyperbolas Α and Β, and let some straight line 
ΓΔ cut Α, and, when continued both ways, let it fall outside the section 37. 
 I say that ΓΔ does not meet the hyperbola Β. 
 [Proof]. For let ΕΖ and ΗΘ be drawn as asymptote to the hyperbolas, 
therefore ΓΔ continued will meet [according to Proposition ii.8] the asymptotes. 
And it only meets them at Ε and Θ. And so it will not meet the hyperbola Β. 
 And it is evident that it will fall through three places. For if some straight 
line meets both of opposite hyperbolas it will meet neither of opposite hyperbo-
las at two points. For it meets it at two points, by what has just been proved it 
will not meet the other hyperbola.  
 
 

[Proposition] 34 
 

 If some straight line touch one of opposite hyperbolas and a parallel to it 
be drawn in the other hyperbola, then the straight line drawn from the point of 
contact to the midpoint of the parallel will be a diameter of the opposite hyper-
bolas38. 
 Let there be the opposite hyperbolas Α and Β,and let some straight line 
ΓΔ touch one of them Α at Α, and let ΕΖ be drawn parallel to ΓΔ in the other hy-
perbola, and let it be bisected at Η, and let ΑΗ be joined. 
 I say that ΑΗ is a diameter of the opposite hyperbolas. 
 [Proof]. For, if possible, let ΑΘΚ be [a diameter] therefore the tangent 
at Θ is parallel to ΓΔ [according to Proposition II.31]. But ΓΔ is also parallel to 
ΕΖ, and therefore the tangent at Θ is parallel to ΕΖ. Therefore [according to 
Proposition I.47] ΕΚ is equal to ΚΖ, and this is impossible for ΕΗ is equal to ΗΖ. 
Therefore ΑΘ is not a diameter of the opposite hyperbolas. Therefore ΑΒ is [a 
diameter]. 
 

[Proposition] 35 
 

 If a diameter in one of opposite hyperbola bisects some straight line, the 
straight line touching the other hyperbola at the end of the diameter will be 
parallel to the bisected straight line 39 . 
 Let there be the opposite hyperbolas Α and Β, and let their diameter ΑΒ 
bisect ΓΔ in hyperbola Β at Ε. 
 I say that the tangent the hyperbola [Α] at Α is parallel to ΓΔ. 
 [Proof]. For, if possible,  let ΔΖ be parallel to the tangent to the hyperbola 
at Α, therefore [according to Proposition I.48] ΔΗ is equal to ΗΖ. 
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But also ΔΕ is equal to ΕΓ. Therefore ΓΖ is parallel to ΕΗ, and this is im-
possible for continued it [according to Proposition I.22] meets it. Therefore ΔΖ 
is not parallel to the tangent to the hyperbola at Α, nor is any other straight line 
except ΓΔ. 
 

[Proposition] 36 
  
 If parallel straight lines are drawn, one in each of opposite hyperbolas, 
then the straight line joining their midpoints will be a diameter of the opposite 
hyperbolas 40. 
 Let there be the opposite hyperbolas Α and Β, and let ΓΔ and ΕΖ be 
drawn, one in each of them, and let them be parallel, and let them both be bi-
sected at Η and Θ, and let ΗΘ be joined. 
 I say that ΗΘ is a diameter of the opposite hyperbolas. 
 [Proof]. For if not, let ΗΚ be one [diameter]. Therefore the tangent to Α 
[according to Proposition II.5] is parallel to ΓΔ, and so also to ΕΖ. Therefore [ac-
cording to Proposition I.48] ΕΚ is equal to ΚΖ, and this is impossible since also 
ΕΘ is equal to ΘΖ. Therefore ΗΚ is not a diameter of the opposite hyperbolas. 
Therefore ΗΘ is [the diameter]. 
 
 

[Proposition] 37 
 

 If a straight line not through the center cuts the opposite hyperbolas, 
then the straight line joined from its midpoint to the center is a so-called up-
right diameter of the opposite hyperbolas, and the straight line drawn from the 
center parallel to the bisected straight line is a transverse diameter conjugate to 
it 41. 

Let there be the opposite hyperbolas Α and Β let some straight line ΓΔ 
not through the center cut the hyperbola Α and Β and let it be bisected at Ε, 
and let Χ be the center of the hyperbolas, and let ΧΕ is joined, and through 
Χ let ΑΒ be drawn parallel to ΓΔ. 
 I say that ΑΒ and ΕΧ are conjugate diameters of the hyperbolas. 
 [Proof]. For let ΔΧ be joined and continued to Ζ, and let ΓΖ be joined. 
Therefore [according to Proposition I.30] ΔΧ is equal to ΧΖ. But also ΔΕ is equal 
to ΕΓ. Therefore ΕΧ is parallel ΖΓ. Let ΒΑ be continued to Η. And since ΔΧ is 
equal to ΧΖ, therefore also ΕΧ is equal to ΖΗ, and so also ΓΗ is equal to ΖΗ. 
Therefore the tangent at Α [according to Proposition II.5] is parallel to ΓΖ,  and 
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so also to ΕΧ. Therefore ΕΧ and ΑΒ [according to Proposition I.16] are conju-
gate diameter. 
 

[Proposition] 38 
 

 If two straight lines meeting touch opposite hyperbolas, the straight line 
joined from the point of meeting to the midpoint of the straight line joining the 
points of contact will be a so-called upright diameter of the opposite hyperbolas 
and the straight line drawn through center parallel to the straight line joining of 
contact is a transverse diameter conjugate to it 42 

 Let there be the opposite hyperbolas Α and Β, and ΓΧ and ΧΔ touching 
the hyperbolas, and let ΓΔ be joined and bisected at Ε, and let ΕΧ be joined. 
 I say that the diameter ΕΧ is a so-called upright diameter, and the 
straight line drawn through the center parallel to ΓΔ is a transverse diameter 
conjugate to it. 
 [Proof]. For, if possible, let ΕΖ be a diameter, and let Ζ be a point taken at 
random, therefore ΔΧ will meet ΕΖ. Let it meet it at Ζ, and let ΓΖ be joined, 
therefore [according to Proposition I.32] ΓΖ will hit the hyperbola. Let it hit it 
as Α, and through Α let ΑΒ be drawn parallel to ΓΔ. Since then ΕΖ is a diameter, 
and bisects ΓΔ, it also bisects [according to Definition 4] the parallels to it. 
Therefore ΑΗ  is equal to ΗΒ. And since ΓΕ is equal to ΕΔ, and is on the triangle 
ΓΕΔ, therefore also ΑΗ is equal to ΗΚ. And so also ΗΚ equal to ΗΒ, and this is 
impossible. Therefore ΕΖ will be a diameter. 
 

[Proposition] 39 
 

 If two straight line meeting touch opposite hyperbolas, the straight line  
drawn through the center and the point of meeting of the tangents bisects 
straight line joining the points of contact 43. 
 Let there be the opposite hyperbolas Α and Β, and let ΓΕ and ΕΔ be drawn 
touching Α and Β, and let ΓΔ be joined, and let ΕΖ be drawn as a diameter. 
 I say that ΓΖ is equal to ΖΔ. 
 [Proof]. For if not, let ΓΔ be bisected as Η, and let ΗΕ be joined, therefore 
ΗΕ [according to Proposition II.38] is [a  diameter]. But ΕΖ is also 
[a diameter], therefore [according the porism to Proposition I.31] Ε is the cen-
ter. Therefore the point of meeting of the tangents is at the center of the hy-
perbolas, and this [according to Proposition II.32] is impossible. 

Therefore, ΓΖ is not unequal to ΖΔ. Therefore [they are] equal. 
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[Proposition] 40 
 

 If two straight lines touching opposite hyperbolas meet, and trough the 
point of meeting a straight line drawn parallel to straight line joining the points 
of contact, and meeting the hyperbolas, then the straight lines drawn from the 
points of meeting to the midpoint of the straight line joining the point of con-
tact touch the hyperbolas 44. 
 Let there be the opposite hyperbolas Α and Β, and let ΓΕ and ΕΔ be drawn 
touching Α and Β, and let ΓΔ be joined, and through E let ΖΕΗ be drawn parallel 
to ΓΔ, and let ΓΔ be bisected at Θ, and let ΖΘ and ΘΗ be joined. 
 I say that ΖΘ and ΘΗ touch the hyperbolas. 
 [Proof]. Let ΕΘ be joined, therefore ΕΘ is an upright diameter, and the 
straight line drawn through the center parallel to ΓΔ [according to Proposition 
II.38] is a transverse diameter conjugate to it. And let the center Χ be taken, 
and let ΑΧΒ be drawn parallel to ΓΔ, Therefore ΘΕ and ΑΒ are conjugate diame-
ter. And ΓΘ has been drawn as an ordinate to the second diameter, and ΓΕ has 
been drawn touching the section and meeting the second diameter. Therefore 
pl.ΕΧΘ is equal to the square on the half of the second diameter [according to 
Proposition I.38], which is to the quarter of the eidos corresponding to ΑΒ. And 
since ΖΕ has been drawn as an ordinate and ΖΘ joined, therefore [according to 
Proposition I.38] ΖΘ touches the hyperbola Α. Likewise then also ΗΘ touches 
the hyperbola Β. Therefore ΖΘ and ΘΗ touch the hyperbolas Α and Β. 
 

[Proposition] 41 
 

 If in opposite hyperbolas two straight lines not through the center cut 
each to other, then they do not bisect each other45. 
 Let there be the opposite hyperbolas Α and Β, and in Α and Β let ΓΒ and 
ΑΔ not through the center cut each other at Ε. 
 I say that they do not bisect each other. 
 [Proof]. For if possible, let them bisect each other, and let Χ be the cen-
ter of the hyperbolas, and let ΕΧ is be joined, therefore [according to Proposi-
tion II.37] ΕΧ is a diameter. Let ΧΖ be drawn through Χ parallel to ΒΓ, therefore 
ΧΖ is a diameter conjugate to ΕΧ and [according to Proposition II.37]to ΕΧ. 
Therefore the tangent at Ζ is parallel to ΕΧ [according to Definition 6].Then for 
the same reasons with ΘΚ drawn parallel to ΑΔ, the tangent at Θ is parallel to 
ΕΧ, and so also the tangent at Ζ is parallel to the tangent at Θ, and this is im-
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possible for it has been shown [in Proposition II.31] that is it also meets it. 
Therefore ΓΒ and ΑΔ not through the center do not bisect each other. 
 

[Proposition] 42 
 

 If in  conjugate opposite hyperbolas two straight lines not through the 
center cut each to other, then they do not bisect each other46 . 

 Let there be the conjugate opposite hyperbolas Α, Β, Γ, and Δ, and in 
Α, Β, Γ, and Δ let two straight lines not through the center, ΕΖ and ΗΘ, cut each 
other at Κ. 
 I say that they do not bisect each other. 
 [Proof]. For, if possible, let them bisect each other, and let the center of 
the hyperbola be Χ, and let ΑΒ be drawn parallel to ΕΖ and ΓΔ [parallel] to ΘΗ, 
and let ΚΧ be joined, therefore [according to Proposition II.37] ΚΧ and ΑΒ are 
conjugate diameters. Likewise ΧΚ and ΓΔ are also conjugate diameter. And so 
also the tangent at Α is parallel to the tangent at Γ, and this is impossible for it 
meets it, since the tangent at Γ [according to Proposition II.19] cuts the hyper-
bolas Α and Β, and the tangent at Α [cuts] the hyperbolas Γ and Δ, it is evident 
also that their point of meeting [according to Proposition II.21] is in the place 
under the angle ΑΧΓ. Therefore ΕΖ and ΗΘ not through the center do not bisect 
each other. 
 

[Proposition] 43 
 

 If a straight line cuts one of conjugate opposite hyperbolas at two points, 
and through the center one straight line is drawn to the meet point of the cut-
ting straight line,  and another straight line is drawn parallel to the cutting 
straight line, they will be conjugate diameter of the opposite hyperbolas47.   
 Let there be  the conjugate opposite hyperbolas Α, Β, Γ, and Δ, and let 
some straight line cut the hyperbola Α at two points Ε and Ζ, and let ΖΕ be bi-
sected at Η, and let Χ be the center, and let ΧΗ be joined, and let ΓΧ be drawn 
parallel to ΕΖ. 
 I say that ΑΧ and ΧΓ are conjugate diameters. 
 [Proof]. For since ΑΧ  is a diameter,  and bisects ΕΖ, the tangent at Α    
[according to Proposition  II.5] is parallel to ΕΖ, and so also to ΓΧ. Since then 
they are opposite hyperbolas, and a tangent has been drawn to one of them, 
Α at Α, and from the center Χ one straight line ΧΑ is joined to the point of con-
tact, and another ΓΧ has been drawn parallel to the tangent, therefore ΧΑ and 
ΓΧ are conjugate diameter for this has been shown before [in Proposition II.20]. 
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[Proposition] 44  [Problem] 

 
 Given  a section of a cone, to find a diameter 48. 
 Let there be the given conic section on which are the point Α, Β, Γ, Δ,  
and Ε. Then it is required to find a diameter. 
 [Solution]. Let it have been done, and let it be ΓΘ than with ΔΖ and 
ΕΘ drawn as ordinates and continued ΔΖ is equal to ΖΒ, and ΕΘ is equal to ΘΑ. 
 If then we fix ΒΔ and ΕΑ in position to be parallel,  the points Θ and Ζ will 
be given. And so ΘΖΓ will be given in position. 
         Then the synthesis49 to this problem is as follows. Let there be the given 
conic section on which are the points Α, Β, Γ, Δ, and Ε, and let ΒΔ and ΑΕ be 
drawn parallel and bisected at Ζ and Θ. And  ΖΘ joined will be [according to 
Proposition II.28] a diameter of the section. And in the same way we could also 
find an indefinite number of diameter. 
 

[Proposition]  45  [Problem] 
 

 Given an ellipse or a hyperbola, to find the center50. 
 And this is evident: for if two diameters of the section ΑΒ and ΓΔ, are 
drawn [according to Proposition II.44] through point at which they cut each 
other will be the center of the section, as indicated. 
 

[Proposition] 46 [Problem] 
 

 Given a section of a cone, to find the  axis 51. 
 Let the given section if a cone first be a parabola, on which are the 
point Ζ, Γ, and Ε. Then it is required to find its axis. 
 [Solution]. For let ΑΒ be drawn as a diameter of it [according to Proposi-
tion II.44]. If then ΑΒ is an axis, what was enjoined would have been done, but it 
not, let it have been done, and let ΓΔ be the axis: therefore the axis ΓΔ is paral-
lel to ΑΒ [according to the porism to Proposition I.51] and bisects the straight 
lines drawn perpendicular to it[according to Definition 7] And the perpendiculars 
to ΓΔ are also perpendiculars to ΑΒ, and so ΓΔ bisects the perpendicular to ΑΒ. 
If then we fix ΕΖ, a perpendicular to ΑΒ, it will be given in position, and therefore 
ΕΔ is equal to ΔΖ, therefore Δ is given. 

Therefore through the given point Δ, ΓΔ has been drawn parallel to ΑΒ, 
which is given in position, therefore ΓΔ is given in position. 
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 Then  the synthesis of this problem is as follows. Let there be parabola on 
which are points Ζ, Ε, and A, and let ΑΒ, a diameter of it, be drawn [according to 
Proposition II.44] and let ΒΕ be drawn perpendicular to it, and let it be contin-
ued to Ζ. If then ΕΒ is equal to ΒΖ, it is evident that ΑΒ is the axis [according to 
Definition 7], but if not, let ΕΖ be bisected at Δ and let ΧΔ be drawn parallel to 
ΑΒ. Then it is evident that ΧΔ is the axis of the section for it is parallel to the 
diameter it is also a diameter it bisects ΕΖ at right angles. Therefore ΓΔ has 
been found as the axis of the given parabola. 
 And it is evident that the parabola has one only axis for if there is another 
as ΑΒ, it will be parallel to ΓΔ [ according the porism to Proposition I.51]. And 
its cuts ΕΖ and so it also bisects it [according to Definition 4]. 
 Therefore ΒΕ is equal to ΒΖ, and this is impossible. 
 

[Proposition] 47 [Problem] 
 

 Given a hyperbola or an ellipse, to find the axis 52 . 
 Let there be the hyperbola or the ellipse ΑΒΓ, then it is required to find 
its axis. 
 [Solution]. Let it have been found, and let it be ΚΔ, and Κ the center of 
the section, therefore ΚΔ bisects the ordinates to it and at right angles [accord-
ing to Definition 7]. 
 [Solution]. Let the perpendicular ΓΔΑ be drawn, and let ΚΑ and ΚΓ be 
joined. Since then ΓΔ is equal to ΔΑ, therefore ΔΚ is equal to ΚΑ. 
 If then we fix the given point Γ, ΓΚ will be given. And so the circle de-
scribed, ΓΚ will be given. And so the circle  with the center Κ and the radius 
ΚΓ will also pass through Α and will be given in position. And the section ΑΒΓ is 
also given in position, therefore Α is given. But Γ is also given, therefore ΓΑ is 
given in position. Also ΓΔ is equal to ΔΑ, therefore Δ is given. But also is given, 
therefore ΔΚ is given in position. 
 Then  the synthesis of thus: problem is as follows.  Let there be given the 
hyperbola or the ellipse ΑΒΓ, and let Κ be taken as its center, and let a point be 
taken as random on the section, and let the circle ΓΕΑ with the center Κ and the 
radius ΚΓ be described, and let ΓΑ be joined and bisected at Δ, and let ΚΓ, KD, 
and ΚΑ be joined, and let ΚΔ be drawn through Β. 
 Since then  ΑΔ is equal ΔΓ, and ΔΚ is common, therefore ΓΔ and ΔΚ are 
equal to ΑΔ and ΔΚ, and the base ΚΑ is equal to the base ΚΓ. Therefore ΚΒΔ bi-
sects ΑΔΓ at right angles. Therefore ΚΔ is an axis [according to Definition 7], 
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 Let ΜΚΝ be drawn through  Κ parallel to ΓΑ, therefore ΜΝ air the axis of 
the hyperbola conjugate to ΒΚ [according to Definition 8]. 
 

[Proposition] 48  [Problem] 
 

 Then with these reasons shown, let it be next in order to show that there 
are no other axes of the same section53. 
 [Solution]. For, if possible, let there also be another axis ΚΗ. Then in the 
same way as before with ΑΘ drawn perpendicular [according to Definition 4] ΑΘ 
is equal to ΘΛ and so also ΑΚ is equal to ΚΛ. But also ΑΚ is equal to ΚΓ, there-
fore ΚΛ is equal to ΚΓ, and this is impossible. 
 Now that the circle ΑΕΓ does not hit the section also at another point be-
tween  Α, Β, and Γ, is evident in the case of the hyperbola, and in the case of 
the ellipse the perpendiculars ΓΡ and ΛΣ be drawn. Since then ΚΓ is equal to ΚΛ 
for they are radii, also sq.ΚΓ is equal to sq.ΚΛ. But the sum of sq.ΓΡ and sq.ΡΚ 
is equal to sq.ΓΚ, therefore the sum sq.ΓΡ and sq.ΡΚ is equal to the sum sq.ΚΣ 
and sq.ΣΛ.  
 Therefore the difference between sq.ΓΡ and sq.ΣΛ is equal to the differ-
ence between sq.ΚΣ and sq.ΡΚ. 
 Again since  the sum pl.ΜΡΝ and sq.ΡΚ is equal to sq.ΚΜ, and also  
[according to Proposition II.5 of Euclid] the sum pl.ΜΣΝ and sq.ΣΚ is equal to 
sq.ΚΜ, therefore the sum pl.ΜΡΝ and sq.ΡΚ is equal to the sum pl.ΜΣΝ and 
sq.ΣΚ. Therefore the difference between sq.ΣΚ and sq.ΚΡ is equal to the differ-
ence between pl.ΜΡΝ and pl.ΜΣΝ. 
 And it was shown that the difference between sq.ΣΚ and sq.ΚΡ is equal to 
the difference between sq.ΓΡ and sq.ΣΛ, therefore the difference between sq.ΓΡ 
and sq.ΣΛ is equal to the difference between pl.ΜΡΝ and pl.ΜΣΝ.  And since ΓΡ 
and ΛΣ are ordinates [according to Proposition I.21] as sq.ΓΡ is to pl.ΜΡΝ, so 
sq.ΣΛ is to pl.ΜΣΝ. 
 But the same difference was also shown for both, therefore sq.ΓΡ is equal 
to pl.ΜΡΝ, and [according to Propositions V.9, V.16, and V.17 of Euclid] 
sq.ΣΛ is equal to pl.Μ 
 Therefore the line ΛΓΜ is a circle and this is impossible for it is supposed 
an ellipse. 

[Proposition] 49  [Problem]  
 

 Given a section of a cone and a point both with in the section, to draw 
from this point a straight line touching the section 54 . 
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 Let the given section of a cone first a parabola whose axis is ΒΔ. Then it is 
required to draw a straight line as prescribed from the given point that is not 
within the section. 
 Then the given point is either on the line or on the axis or somewhere else 
outside. 
 Now let it be on the line, and let it be Α, and let it have been done,  and 
let it be ΑΕ, let ΑΔ be drawn perpendicular,  then it will be given in position. 
And [according to Proposition I.35] ΒΕ is equal to ΒΔ,  and ΒΔ is given, there-
fore ΒΕ is also given. And Β is given, therefore Ε is also given. But Α also [is 
given], therefore ΑΕ is given in position. 
 Then the synthesis of this problem is as follows. Let ΑΔ be drawn perpen-
dicular from Α, and let ΒΕ be made equal to ΒΔ, and let ΑΕ be joined. 
Then it is evident that it [according to Proposition I.33] touches the section. 
 Again let the given point Ε be on the axis, and let it have  been done, and 
let ΑΕ be drawn tangent, and let ΑΔ be drawn perpendicular, therefore [accord-
ing to Proposition I.35] ΒΕ is equal to ΒΔ. And ΒΕ is given, therefore also ΒΔ is 
given. And Β is given, therefore Δ is also given. And ΔΑ is perpendicular, there-
fore ΔΑ is given in position. Therefore Α is given. But also Ε [is given], therefore 
ΑΕ is given in position. 
 Then the synthesis of this problem is as follows. Let ΒΔ  be made equal to 
ΒΕ, and from Δ let ΔΑ be drawn perpendicular to ΕΔ, and let ΑΕ be joined. 

Then it is evident that ΑΕ touches [according to Proposition I.33]. 
 And it is evident also that, even if the given point is the same as Β, the 
straight line drawn from Β perpendicular touches the section [according to 
Proposition I.17]. 
 Then let Γ  be let the given point, ad let it have been done, and let ΓΑ be 
it, and through Γ let ΓΖ be drawn parallel to the axis, that is to ΒΔ, therefore ΓΖ 
is given in position. And from Α let ΑΖ be drawn as an ordinate to ΓΖ, then [ac-
cording to Proposition I.35] ΓΗ is equal to ΖΗ. And Η is given, therefore Ζ is also 
given. And ΖΑ has been erected as an ordinate, which is parallel to the tangent 
as Η [according to Proposition I.32], therefore ΖΑ is given in position.  There-
fore Α is also given, but also Γ [is given]. Therefore ΓΑ is given in position. 
 Then the synthesis of this problem is as follows. Let ΓΖ be drawn through 
Γ parallel to ΒΔ, and let ΖΗ be made equal to ΓΗ, and let ΖΑ be drawn parallel to 
the tangent at Η, and let ΑΓ be joined. It is evident then that this will do the 
problem [according to Proposition I.33]. 
 Again let it be a hyperbola whose axis is ΔΒΓ and center Θ, and asymp-
totes ΘΕ an ΘΖ. Then the given point will be given either on the section or on 
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the axis or within the angle ΕΘΖ or in the adjacent place or on one of the as-
ymptotes containing the section or in the place between the straight lines con-
taining the angle vertical to the angle ΕΘΖ. 
 Let Α first be on the section, and let it have been done, and let ΑΗ be 
tangent, and let ΑΔ be drawn perpendicular, and let ΒΓ be the latus transversum 
of the eidos, then [according to Propositions I.36] as ΓΔ is to ΔΒ, so ΓΗ is to 
ΗΒ. And the ratio ΓΔ to ΔΒ is given for both  these straight lines are given, 
therefore also the ratio ΓΗ to ΓΒ is given. And ΒΓ is given, therefore Η is given. 
But also Α [is given], therefore ΑΗ is given in position. 
 Then the synthesis of this problem is as follows.  Let ΑΔ be drawn per-
pendicular from Α, and let as ΓΗ is to ΗΒ, so ΓΔ is to ΔΒ, and let ΑΗ be joined 
then it is evident that ΑΗ touches the section [according to Proposition I.34]. 
 Then again let the given point Η be on the axis, and let it have been done, 
and let ΑΗ be drawn tangent, and let ΑΔ be drawn perpendicular. Then for the 
same reason [according to Proposition I.36] as ΓΗ is to ΗΒ, so ΓΔ is to ΔΒ. And 
ΒΓ is given, therefore Δ is given. And ΔΑ is perpendicular, therefore ΔΑ is given 
in Position. And also the section is given in position, therefore Α is given. But 
also Η [is given], therefore ΑΗ is given in position. 
 Then the synthesis of this problem is as follows. Let all other be supposed 
the same, and let it be contrived that as ΓΗ is to ΗΒ, so ΓΔ is to ΔΒ, and let ΔΑ 
be drawn perpendicular, and let ΑΗ be joined. Then it is evident ΑΗ does the 
Problem [according to Proposition I.34], and that from Η another tangent to the 
section could be drawn on the other side. 
 With the same suppositions let the given point Κ be in the place inside the 
angle ΕΘΖ, and let it be required to draw a tangent to the section from Κ. 
Let it have been done, and it be ΚΑ, and let ΚΘ be joined an continued, and let 
ΘΝ be made equal to ΛΘ, therefore they are all given. Then also ΛΝ will be 
given. Then let ΑΜ be drawn as an ordinate to ΜΝ, then also as ΝΚ is to ΚΛ, so 
ΜΝ is to ΜΛ. 
 And the ratio ΝΚ to ΚΛ is given,  therefore the ratio ΝΜ to ΜΛ is given. 
And Λ is given, therefore also Μ is given. And ΜΑ has been erected parallel to 
the tangent at Λ, therefore ΜΑ is given in position. 

And also the section ΑΛΒ is given in position, therefore Α is given. But Κ is 
also given, therefore ΑΚ is given. 
 Then the synthesis of this problem is as follows. Let all other be supposed 
the same, and the given point Κ, and ΚΘ be joined and continued, and let ΘΝ be 
made equal to ΘΛ, and let it be contrived that as ΝΚ is to ΚΛ, so ΝΜ is to ΜΛ, 



89 

and let ΜΑ be drawn parallel to the tangent at Λ, and let ΚΑ be joined, there-
fore [according to Proposition I.34] ΚΑ touches the section. 
 And it is evident that a tangent to the section could also be drawn to the 
other side. 
 With the same suppositions the given point Ζ be on one of the asymp-
totes containing the section, and let it be required to draw from Ζ a tangent to 
the section. And let it have been done, and let it be ΖΑΕ, and through Α let ΑΔ 
be drawn parallel to ΕΘ, then ΔΘ is equal to ΔΖ, since also [according to Propo-
sition II.3] ΖΑ is equal to ΑΕ. And ΖΘ is given, therefore also Δ is given. And 
through the given point Δ ΔΑ  has been drawn parallel in position to ΕΘ, there-
fore ΔΑ is given in position. And the section is also given in position, therefore Α 
is given. But Ζ also given therefore ΖΑΕ is given in position. 
 Then the synthesis of this problem is as follows. Let there be the section 
ΑΒ, and asymptotes ΕΘ and ΘΖ, and the given point Ζ on one of the asymp-
totes containing the section, and let ΖΘ be bisected as Δ, and through Δ let ΔΑ 
be drawn parallel to ΘΕ and let ΖΑ be joined. And since ΖΔ is equal to ΔΘ there-
fore also ΖΑ is equal to  ΑΕ. 
 And so by the shown before [in Proposition II.9] ΖΑΕ touches the section. 
 With the same supposition let the given point be in the place under the 
angle adjacent to the straight lines containing the section, and let it be Κ, it is 
required then to draw a tangent to the section from Κ. And let it have been 
done, and let be ΚΑ, and let ΚΘ be joined and continued, then it will be given in 
position. If then a given point Γ is taken on the section, and through Γ ΓΔ is 
drawn parallel to ΚΘ it will be given in position. And if ΓΔ is bisected at Ε, and 
ΘΕ is joined and continued, it will be in position a diameter conjugate to ΚΘ [ac-
cording to Definition 6]. Then let ΘΗ be made equal to ΒΘ, and through Α let 
ΑΛ be drawn parallel to ΒΘ, then because ΚΛ and ΒΗ are conjugate diameters, 
and ΑΚ a tangent, and ΑΛ a straight line drawn parallel to ΒΗ, therefore pl.ΚΘΛ 
is equal to the quarter of the eidos corresponding to ΒΗ [according to Proposi-
tion I.38]. Therefore pl.ΚΘΛ is given. And ΚΘ is given, therefore ΘΛ is also 
given. But it is also given in position, and Θ is given, therefore Λ is also given. 
And through Λ ΛΑ has been drawn parallel in position to ΒΗ, therefore ΛΑ is 
given in position. And the section is also given in position, therefore Α is given. 
But also Κ [is given], therefore ΑΚ is given in position. 
 Then the synthesis is as follows. Let the other supposition be the same, 
and let the given point Κ be in the mentioned place, and let ΚΘ be joined 
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and continued, and let some point ΓΖ be taken, and let ΓΔ be drawn parallel  to 
ΚΘ, and let ΓΔ bisected at Ε and let ΕΘ be joined and continued, and ΘΗ be 
made equal to ΒΘ, therefore ΗΒ is a transverse diameter conjugate to ΚΘΛ 
[according to Definition 6] then let pl.ΚΘΛ be made equal to the quarter of the 
eidos corresponding to ΒΗ, and through Λ let ΛΑ be drawn parallel to ΒΗ, 
and let ΚΑ be joined, then it is clear that ΚΑ touches the section according to 
the converse of the theorem [Proposition I.38]. 
 And if it is given in the place between ΕΘ and ΘΠ, the problem is impossi-
ble for the tangent will cut ΗΘ. And so it will meet both ΖΘ and ΘΠ, and this is 
impossible according to shown in the theorem 31 of the book I [Proposition 
I.31] and in the theorem 3 of this book [Proposition II.3]. 
 With the same suppositions let the section be an ellipse and the given 
point Α on the section, and let it be required to draw from Α tangent  to the 
section. Let it have been done, and let it be ΑΗ, and let ΑΔ be drawn from Α as 
an ordinate to the axis ΒΓ, then Δ will be given,  and [according to Proposition 
I.36] as ΓΔ is to ΔΒ, so ΓΗ is to ΓΒ. 
 And the ratio ΓΔ to ΔΒ is given, therefore the ratio ΓΗ to ΓΒ is also given. 
Therefore Η is given. But also Α [is given],therefore ΑΗ is given in position. 
 Then the synthesis of this problem is as follows. Let ΑΔ be drawn perpen-
dicular, and let as ΓΗ is to ΗΒ, so ΓΔ is to ΔΒ, and let ΑΗ be joined. 
Then it is evident that ΑΗ touches, as also in the case of the hyperbola [accord-
ing to Proposition I,34]. 
 Then again let the given point be Κ,  and let it be required to draw a tan-
gent. Let it have been done, and let it be ΚΑ, and let ΚΛΘ be joined to the cen-
ter Θ and continued to Ν, then will be given in position. And if ΑΜ is drawn as 
an ordinate, then [according to Proposition I.36] as ΝΚ is to ΚΛ, so ΝΜ is to 
ΜΛ. and the ratio ΝΚ to ΚΛ is given, therefore the ratio ΜΝ to ΛΜ is also given. 
Therefore Μ is given. And ΜΑ has been erected as an ordinate for it is parallel 
to the tangent at Λ, therefore ΜΑ is given in position. Therefore Α is given. But 
also Κ [is given], Therefore ΚΑ is given in position. 
 And the synthesis of this problem is the same as for the preceding. 
 

[Proposition] 50  [Problem] 
 

 Given the section of a cone, draw a tangent, which will make with the axis, 
on the same side as the section, an angle equal to a given acute angle55. 
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 Let the section of a cone first be a parabola whose axis is ΑΒ, then it is 
required to draw a tangent to the section that will make with the axis ΑΒ on the 
same side as the section an angle equal to the given acute angle. 
 [Solution]. Let the have been done, and let it be ΓΔ, therefore the angle 
ΒΔΓ is given, let ΒΓ is drawn perpendicular, then the angle at Β is also given. 
Therefore the ratio ΔΒ to ΒΓ is given. But the ratio ΒΔ to ΒΑ is given, therefore 
also the ratio ΑΒ to ΒΓ is given. And the angle at Β is given, therefore the angle 
ΒΑΓ is also given. And it is [given] with respect to ΒΑ, which is given in posi-
tion, and with respect to the given point Α, therefore ΓΑ is given in position. 
And the section is also given in position, therefore Γ is given. And ΓΔ touches, 
therefore ΓΔ is given in position. 
 Then the synthesis of this problem is as follows. Let the given section of 
a cone first be a parabola whose axis is ΑΒ, and the given acute angle ΕΖΗ, and 
let some point Ε be taken on ΕΖ, and let ΕΗ be drawn perpendicular, and let ΖΗ 
be bisected at Θ, and let ΘΕ be joined, and let the angle ΒΑΓ be made equal to 
the angle ΗΘΕ, and let ΒΓ be drawn perpendicular, and let ΑΔ be made equal to 
ΒΑ, and let ΓΔ be joined. Therefore ΓΔ [according to Proposition I.33] is tangent 
to the section. 
 I say then that the angle ΓΔΒ is equal to the angle ΕΖΗ. For since as ΖΗ is 
to ΗΘ, so ΔΒ is to ΒΑ, and as ΘΗ is to ΗΕ, so ΑΒ is to ΒΓ, therefore ex56 as ΖΗ 
is to ΗΕ, so ΔΒ is to ΒΓ. 
 And the angles at Η and Β are right, therefore the angle at Ζ is equal to 
the angle at Δ. 
 Let the section be a hyperbola, and let it have been done, and let ΓΔ be 
tangent, and let the center of the section Χ be taken, and let ΓΧ be joined and 
let ΓΕ be perpendicular, therefore the ratio pl.ΧΕΔ to sq.ΓΕ is given for [accord-
ing to Proposition I.37] it is the same as the ratio of the latus transversum to 
the latus rectum. And the ratio sq,ΓΕ to sq.ΕΔ is given for each of the angles 
ΓΔΕ and ΔΕΓ is given. Therefore the ratio pl.ΧΕΔ to sq.ΕΔ  is given, and so also 
the ratio ΧΕ to ΕΔ is given. And the angle at Ε is given, therefore the angle at Χ 
is also given. Then some straight line ΓΧ has been drawn across in position with 
respect to ΧΕ and to the given point Χ at a given angle, therefore ΓΧ is given in 
position. And the section is also given in position, therefore Γ is given. And ΓΔ 
has been drawn across as tangent, therefore ΓΔ is given in position. 
 Let the asymptote to the hyperbola ΧΖ be drawn, therefore ΓΔ continued 
[according to Proposition II,3] meet the asymptote. Let it meet it at Ζ. There-
fore the angle ΖΔΕ is greater than the angle ΖΧΔ. 
 Therefore for the construction the given acute angle will have to be 
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greater than the half the angle between the asymptotes. 
 Then  the synthesis of his problem is as follows. Let there be the given 
hyperbola whose axis is ΑΒ, the asymptote ΧΖ, and the given acute angle ΚΘΗ 
greater than the angle ΑΧΖ and let the angle ΚΘΛ equal to the angle ΑΧΖ and 
let ΑΖ be drawn from Α perpendicular to ΑΒ and let some point Η be taken on 
ΗΘ, and let ΗΚ be drawn from it perpendicular to ΘΚ. Since then the angle ΖΧΑ 
is equal to the angle ΛΘΚ, and also the angles at Α and Κ are right, therefore as 
ΧΑ is to ΑΖ, so ΘΚ is to ΚΛ, and [the ratio] ΘΚ to ΚΛ is greater than [the ratio] 
ΘΚ to ΚΗ, therefore also [the ratio] ΧΑ to ΑΖ is greater [the ratio] ΘΚ to ΚΗ. 
And so also [the ratio] sq.ΧΑ  to sq.ΑΖ is greater than [the ratio] sq.ΘΚ to 
sq.ΚΗ . 
 But [according to Proposition II.1] as sq.ΧΑ is to sq.ΑΖ, so  the latus 
transversum is to  the latus rectum, therefore also [the ratio]  the latus trans-
versum to the latus rectum is greater than [the ratio] sq.ΘΚ to sq.ΚΗ. 
 If then we shall contrive that as sq.ΧΑ is to sq.ΑΖ, so some other is to 
sq.ΚΗ,  it will be greater than sq.ΘΚ. Let it be pl.ΜΚΘ, and let ΗΜ be joined. 
Since then sq.ΜΚ is greater than pl.ΜΚΘ, therefore [the ratio] sq.ΜΚ to sq.ΚΗ 
is greater than [the ratio] pl.ΜΚΘ to sq.ΚΗ, which is greater than [the ratio] 
sq.ΧΑ to sq.ΑΖ. 
 And if we shall contrive that as sq.ΜΚ is to sq.ΚΗ, so sq.ΧΑ is to some 
other, it will be to a magnitude less than sq.ΑΖ, and the straight line joined from 
Χ to the point taken will make similar triangles, and therefore the angle ΖΧΑ is 
greater than the angle ΗΜΚ. Let the angle ΑΖΓ be made equal to the angle 
ΗΜΚ, therefore ΧΓ will cut the section [according to Proposition II.2].  Let is cut 
it at Γ, and from Γ let ΓΔ be drawn tangent to the section [according to Propo-
sition II.49], and ΓΕ drawn perpendicular, therefore the triangle ΓΧΕ is similar to 
the triangle ΗΜΚ. Therefore as sq.ΧΕ is to sq.ΕΓ, so sq.ΜΚ is to sq.ΚΗ. 
 But also [according to Proposition I.37] as the latus transversum is to the 
latus rectum, so pl.ΧΕΔ is to sq.ΕΓ, and as the latus transversum is to the latus 
rectum, so pl.ΜΚΘ is to sq.ΚΗ. And inversely as sq.ΓΕ is to pl.ΧΕΔ, so sq.ΗΚ is 
to pl.ΜΚΘ, therefore ex as sq.ΧΕ is to pl.ΧΕΔ, so sq.ΜΚ is to pl.ΜΚΘ. And 
therefore as ΧΕ is to ΕΔ, so ΜΚ is to ΚΘ.  But also we had as ΓΕ is to ΕΧ, so ΗΚ 
is to ΚΜ, therefore ex as ΓΕ is to ΕΔ, so ΗΚ is to ΚΘ.  
 And the angles at Ε and Κ are right, therefore the angle at Δ is equal to 
the angle ΗΘΚ. 
 Let the section be an ellipse whose axis is ΑΒ. Then it is required to draw 
a tangent to the section that with the axis will contain on the same side as the 
section an angle equal to the given acute angle. 
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 Let it have been done, and let it be ΓΔ. Therefore the angle ΓΔΑ is given. 
Let ΓΕ be drawn perpendicular,  therefore the ratio sq.ΔΕ to sq.ΕΓ is given. Let 
Χ be the center of the section, and let ΓΧ be joined. Then the ratio sq.ΓΕ to 
pl.ΔΕΧ is given for [according to Proposition I.37] it is the same as the ratio of 
the latus rectum to the latus transversum, and therefore the ratio sq.ΔΕ to 
pl.ΔΕΧ is given, and therefore the ratio ΔΕ to ΕΧ is given. And [the ratio] ΔΕ to 
ΕΓ [also is given], therefore  the ratio ΓΕ to ΕΧ is given. 

And the angle at Ε is right, therefore the angle at Χ is given. And it is 
given respect to a straight line given in position and to a given point, therefore 
Γ is given. And from the given point Γ let ΓΔ be drawn tangent, therefore ΓΔ is 
given in position. 
 Then the synthesis of this problem is as follows. Let there be the given 
acute angle ΖΗΘ, and let some point Ζ be taken on ΖΗ, and let ΖΘ be drawn  
perpendicular, and let it be contrived that as the latus rectum is to the latus 
transversum, so sq.ΖΘ is to pl.ΗΘΚ, and let ΚΖ be joined, and let Χ be the cen-
ter of the section, and let the angle ΑΧΓ be made equal to the angle ΑΚΖ, and 
let ΓΔ be drawn tangent to the section [according to Proposition II.49]. 
 I say that ΓΔ does the problem, that is the angle ΓΔΕ is equal to the angle 
ΖΗΘ. For since as ΧΕ is to ΕΓ, so ΚΘ is to ΖΘ, therefore also as sq.ΧΕ is to 
sq.ΕΓ, so sq.ΚΘ is to sq.ΖΘ. But also as sq.ΕΓ is to pl.ΔΕΧ, so sq.ΖΘ is to pl.ΚΘΗ 
for each is the same ratio as that of the latus rectum to the latus transversum 
[according to Proposition I.37]. And  therefore ex as sq.ΧΕ is to pl.ΔΕΧ, so 
sq.ΚΘ is to pl.ΚΘΗ. And therefore as ΧΕ is to ΕΔ, so ΚΘ is to ΘΗ. 
 But also as ΧΕ is to ΕΓ, so ΚΘ is to ΖΘ, therefore ex as ΔΕ is to ΕΓ, so ΘΗ 
is to ΖΘ. 
 And the sides about the right angles are proportional, therefore the angle 
ΓΔΕ is equal to the angle ΖΗΘ. Therefore ΓΔ does the problem. 
 

[Proposition] 51  [Problem] 
 

 Given a section of a cone, to draw a tangent, which with the diameter 
drawn through the point of contact will contain an angle equal to a given acute 
angle 57 . 

 Let the given section of a cone first be a parabola whose axis is ΑΒ, and 
the given angle is Θ, then it is required to draw a tangent to the parabola which 
with the diameter from the point of contact will contain an angle equal to the 
angle Θ. 
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 [Solution]. Let it have been done, and let ΓΔ be drawn a tangent making 
with the diameter ΕΓ drawn through the point of contact the angle ΕΓΔ equal to 
the angle Θ, and let ΓΔ meet the axis at Δ [according to Proposition I.24].  Since 
then ΑΔ is parallel to ΕΓ [according the porism to Proposition I.51] the angle 
ΑΔΓ is equal to the angle ΕΓΔ. 
 But the angle ΕΓΔ is given for it is equal to the angle Θ, therefore the an-
gle ΑΔΓ is also given. 
 Then the synthesis of this problem is as follows. Let there be a parabola 
whose axis is ΑΒ, and the given angle is Θ. Let ΓΔ be drawn a tangent to the 
section making  with the axis the angle ΑΔΓ equal to the angle Θ [according to 
Proposition II.50], and through Γ let ΕΓ be drawn parallel to ΑΒ. Since then the 
angle Θ is equal to the angle ΑΔΓ, and the angle ΑΔΓ is equal to the angle ΕΓΔ, 
therefore also the angle Θ is equal to the angle ΕΓΔ. 
 Let the section a hyperbola whose axis  is ΑΒ, and center Ε and asymp-
tote ΕΤ, and the given acute angle Ω, and let ΘΔ be tangent and let ΓΕ be joined 
doing the problem. And let ΓΗ be drawn perpendicular. Therefore the ratio of 
the latus transversum to the latus rectum is given, and so also the ratio pl.ΕΗΔ 
to sq.ΓΗ [according to Proposition I.37]. Then let some given straight line ΖΘ be 
laid out, and on it let there be described an arc of a circle admitting an angle 
equal to the angle Ω [according to Proposition III.33 of Euclid], therefore it will 
greater than a semicircle [according to Proposition III.31 of Euclid]. And from 
some point Κ of those on the circumference let ΚΛ be drawn perpendicular mak-
ing as pl.ΖΛΘ is to sq.ΛΚ, so the latus transversum is to the latus rectum, and 
let ΖΚ and ΚΘ be joined. Since then the angle ΖΚΘ is equal to the angle ΕΓΔ, but 
also as pl.ΕΗΔ is to sq.ΗΓ, so the latus transversum is to the latus rectum, and 
as pl.ΖΛΘ is to sq.ΛΚ, so the latus transversum is to the latus rectum, therefore 
the triangle  ΚΖΛ is similar to the triangle ΕΓΗ, and the triangle ΖΘΚ [is simi-
lar]to the triangle ΕΓΔ. And so the angle ΘΖΚ is equal to the angle ΓΕΔ. 
 Then the synthesis of this problem is as follows. Let there be the given 
hyperbola ΑΓ, and axis ΑΒ, and center Ε, and given acute angle Ω, and let the 
given ratio of the latus transversum to the latus rectum be the same as  
ΧΨ to ΧΦ, and let ΦΨ be bisected at Υ, and let a given straight line ΖΘ be laid 
out, and on it let there be described an arc of a circle greater than semicircle 
and  admitting an angle equal to the angle Ω [according to Proposition III.31 and 
III,33], and let it be ΖΚΘ, and let the center of the circle Ν be taken, and from Ν 
let ΝΟ be drawn perpendicular to ΖΘ, and let ΝΟ be cut at Π in the ratio ΥΦ to 
ΦΧ, and through Π let ΠΚ be drawn parallel to ΖΘ and from Κ let ΚΛ be drawn 
perpendicular to ΖΘ continued, and let ΖΚ and ΚΘ be joined, and let ΛΚ be con-
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tinued to Μ, and from Ν let ΝΞ be drawn perpendicular to it, therefore it is par-
allel to ΖΘ. 
 And therefore as ΝΠ is to ΠΟ or ΥΦ is to ΦΧ, so ΞΚ is to ΚΛ. 
 And doubling the antecedents as ΨΦ is to ΦΧ, so ΜΚ is to ΚΛ, and com-
ponendo as ΨΧ is to ΧΦ, so ΜΛ is to ΛΚ. But as ΜΛ is to ΛΚ, so pl.ΜΛΚ is to 
sq.ΛΚ, therefore as ΨΧ is to ΧΦ, so pl.ΜΛΚ is to sq.ΛΚ, and [according to 
Proposition III.36 of Euclid] pl.ΖΛΘ is to sq.ΛΚ. 
 But as ΨΧ is to ΧΦ, so the latus transversum is to the latus rectum,  
therefore also as pl.ΖΛΘ is to sq.ΛΚ, so the latus transversum is to latus rec-
tum. 
 Then let ΑΤ be drawn from Α perpendicular to ΑΒ. Since then [according 
to Proposition II.1] as sq.ΕΑ is to sq.ΑΤ so the latus transversum is to the latus 
rectum, and also as the latus transversum is to the latus rectum, so pl.ΖΛΘ is to 
sq.ΛΚ, and [the ratio] sq.ΖΛ to sq.ΛΚ is greater than [the ratio] pl.ΖΛΘ to 
sq.ΛΚ, therefore also [the ratio] sq.ΖΛ to sq.ΛΚ is greater than [the ratio] 
sq.ΕΑ to sq.ΑΤ. 
 And the angles at Α and Λ are right, therefore the angle Ζ is less than the 
angle Ε. 
 Then let the angle ΑΕΓ be made equal to the angle ΛΖΚ, therefore ΕΓ will 
[according to Proposition II.2] meet the section. Let it meet it at Γ. Then let ΓΔ 
be drawn tangent from Γ [according to Proposition II.49], and let ΓΗ be drawn 
perpendicular, then [according to Proposition I.37] as the latus transversum is 
to latus rectum, so pl.ΕΗΔ is to sq.ΓΗ. Therefore also as pl.ΖΛΘ is to sq.ΛΚ, so 
pl.ΕΗΔ is to sq.ΓΗ, therefore the triangle ΚΖΛ is similar to the triangle ΕΓΗ, and 
the triangle ΚΘΛ [is similar] to the triangle ΓΗΔ, and the triangle ΚΖΘ to the tri-
angle ΓΕΔ. And so the angle ΕΓΔ is equal to the angle ΖΚΘ and is equal to the 
angle Ω. 
 And if the ratio of the latus transversum to the latus rectum is equal to 
the equal, ΚΛ is touches the circle ΖΚΘ [according to Proposition III.37 of 
Euclid], and the straight line joined from the center to Κ will be parallel to ΖΘ 
and it will do the problem. 
 

[Proposition] 52 
 

 If a straight line touches an ellipse making an angle with the diameter 
drawn through the point of contact, it is not less than the angle adjacent to the 
one contained by the straight lines deflected at the middle of the section 58 . 
 Let there be an ellipse whose axes are ΑΒ and ΓΔ, and center Ε, and let 
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ΑΒ be the major axis, and let ΗΖΛ touch the section, and let ΑΓ, ΓΒ, and ΖΕ be 
joined, and let ΒΓ be continued to Λ. 
 I say that the angle ΛΖΕ is not less than  the angle ΛΓΑ. 
 [Proof]. For ΖΕ is either parallel to ΛΒ or not. 
 Let it first be parallel, and ΑΕ is equal to ΕΒ, therefore also ΑΘ is equal to 
ΘΓ. And ΖΕ is a diameter, therefore [according to Proposition II.6] the tangent 
at Ζ is parallel to ΑΓ. But also ΖΕ is parallel to ΛΒ, therefore ΖΘΓΛ is a parallelo-
gram, and therefore the angle ΛΖΘ is equal to the angle ΛΓΘ. And since ΑΕ and 
ΕΒ are each greater than ΕΓ, the angle ΑΓΒ is obtuse, therefore the angle ΛΓΑ 
is acute. And so also the angle ΛΖΕ [is acute]. And therefore the angle ΗΖΕ is 
obtuse. 
 Then let ΕΖ not be parallel to ΛΒ, and let ΖΚ be drawn perpendicular,  
therefore the angle ΛΒΕ is not equal to the angle ΖΕΑ. But the right angle at Ε 
is equal to the right angle at Κ, therefore it is not true that as sq.ΒΕ is to sq.ΕΓ, 
so sq.ΕΚ is to sq.ΚΖ. But [according to Proposition I.21] as sq.ΒΕ is to sq.ΕΓ, so 
pl.ΑΕΒ is to sq.ΕΓ, that is the latus transversum is to the latus rectum, and [ac-
cording to Proposition I.37] as the latus transversum is to latus rectum, so 
pl.ΗΚΕ is to sq.ΚΖ. Therefore it is not true that as pl.ΗΚΕ is to sq.ΚΖ, so sq.ΚΕ 
is to sq.ΚΖ. Therefore ΗΚ is not equal to ΚΕ. 
 Let there be laid out an arc of a circle ΜΥΝ admitting an angle equal to 
the angle ΑΓΒ [according to Proposition III.33 of Euclid], and the angle ΑΓΒ is 
obtuse, therefore ΜΥΝ is an arc less than a semicircle [according to Proposition 
III.31 of Euclid]. Then let it be contrived that as ΗΚ is to ΚΕ, so ΝΞ is to ΞΜ, 
and from Ξ let ΥΞΧ be drawn at right angles, and let ΝΥ and ΥΜ be joined, and 
let ΜΝ be bisected at Τ, and let ΟΤΠ be drawn at right angle; therefore it is a 
diameter. Let the center be Ρ, and from it let ΡΣ be drawn perpendicular, and ΟΝ 
and ΟΜ be joined. Since then the angle ΜΟΝ is equal to the angle ΑΓΒ, and ΑΒ 
and ΜΝ have been bisected, one at Ε and other at Τ, and the angles at Ε and Τ 
are right, therefore the triangles ΟΤΝ and ΒΕΓ are similar. Therefore as sq.ΤΝ is 
to sq.ΤΟ, so sq.ΒΕ is to sq.ΕΓ. And since ΤΡ is equal to ΣΞ, and ΡΟ is greater 
than ΣΥ, therefore [the ratio] ΡΟ to ΤΡ is greater than [the ratio] ΣΥ to ΣΞ, and 
convertendo [the ratio] ΡΟ to ΟΤ is less than [the ratio] ΣΥ to ΥΞ. 
 And doubling the antecedents, therefore [the ratio] ΠΟ to ΤΟ is less 
[the ratio] ΧΥ to ΥΞ. 
 And separando [the ratio] ΠΤ to ΤΟ is less [the ratio] ΧΞ to ΥΞ. 
But [according to Proposition I.21] as ΠΤ is to ΤΟ, so sq.ΤΝ is to  sq.ΤΟ, that is 
sq.ΒΕ is to sq.ΕΓ, that is the latus transversum is to the latus rectum, and [ac-
cording to Proposition I.37] as the latus transversum is to the latus rectum, so 



97 

pl.ΗΚΕ is to sq.ΚΖ.  Therefore [the ratio] pl.ΗΚΕ to sq.ΚΖ is less than [the ratio] 
ΧΞ to ΞΥ, that is less [the ratio] pl.ΧΞΥ to sq.ΞΥ, what 
is less [the ratio] pl.ΝΞΜ to sq.ΞΥ. 
 If then we contrive it that as pl.ΗΚΕ is to sq.ΚΖ, so pl.ΜΞΝ is to some 
other,  it will be greater than sq.ΞΥ. Let it be to sq.ΞΦ. Since then as ΗΚ is to 
ΚΕ, so ΝΞ is to ΞΜ, and ΚΖ and ΧΦ are perpendicular, and as pl.ΗΚΕ is to sq.ΚΖ, 
so pl.ΜΞΝ is to sq.ΞΦ, therefore the angle ΗΖΕ is equal to the angle ΜΦΝ. 
Therefore the angle ΜΥΝ or the angle ΑΓΒ is greater than the angle ΗΖΕ, and 
the adjacent angle ΛΖΘ is greater than the angle ΛΓΘ. 
 Therefore the angle ΛΖΘ is not less than the angle ΛΓΘ. 
 

[Proposition] 53 [Problem] 
 

 Given an ellipse, to draw a tangent which will make with the diameter 
drawn through the point of contact an angle equal to a given acute angle, then 
it is required that the given acute angle be not less than the angle adjacent to 
the angle contained by the straight lines deflected at the middle of the sec-
tion59. 
 Let there be the given ellipse whose major axis is ΑΒ and minor axis ΓΔ, 
and center Ε, and let ΑΓ and ΓΒ be joined,  and let the angle Υ be the given an-
gle not less than the angle ΑΓΗ,  and so also the angle ΑΓΒ is not less than the 
angle Χ. 
 Therefore the angle Υ is either greater for equal to the angle ΑΓΗ. 
 [Solution]. Let it first be equal, and through Ε let ΕΚ be drawn parallel to 
ΒΓ, and through Κ let ΚΘ be drawn tangent to the section [according to Propo-
sition II.49]. Since then  ΑΕ is equal to ΕΒ, and as ΑΕ is to ΕΒ, so ΑΖ is to ΖΓ, 
therefore ΑΖ is equal to ΖΓ. And ΚΕ is a diameter therefore the tangent to the 
section at Κ, that is ΘΚΗ, is parallel to ΓΑ [according to Proposition II.6]. And 
also ΕΚ is parallel to ΗΒ, therefore ΚΖΓΗ is a parallelogram, and therefore the 
angle ΗΚΖ is equal to the angle ΗΓΖ. And the angle ΗΓΖ is equal to the given 
angle, which is Υ, therefore also the angle ΗΚΕ is equal to the angle Υ. 
 Then let the angle Υ is greater than the angle ΑΓΗ, then inversely the an-
gle Χ is less than the angle ΑΓΒ. 
 Let a circle be laid out, and let an arc be taken from it, and let it be ΜΝΠ 
admitting  an angle equal to the angle Χ, and let ΜΠ be bisected at Ο, and from 
Ο let ΝΟΡ be drawn at right angles to ΜΠ, and let ΝΜ and ΝΠ be joined,  
therefore the angle ΜΝΠ is less than the angle ΑΤΒ. 
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 But the angle ΜΝΟ is equal to the half of the angle ΜΝΠ, and the angle 
ΑΓΕ is equal to the half of the angle ΑΓΒ, therefore the angle ΜΝΟ is less than 
the angle ΑΓΕ, And the angle at Ε and Ο are right, therefore [the ratio] ΑΕ to 
ΕΓ is greater than [the ratio] ΟΜ to ΟΝ. And so also [the ratio] sq.ΑΕ to sq.ΕΓ 
is greater than [the ratio] sq.ΜΟ to sq.ΝΟ. 
 But sq.ΑΕ is equal to pl.ΑΕΒ, and [according to Proposition III.35 of 
Euclid} sq.ΜΟ is equal to pl.ΜΟΠ, and is equal to pl.ΝΟΡ, therefore [the ratio] 
pl.ΑΕΒ to sq.ΕΓ for the latus transversum to the latus rectum [according to 
Proposition I.21] is greater than [the ratio] ΡΟ to ΟΝ. 
 Then let it be that as the latus transversum is to the latus rectum, so  
Ω � is to �ς60 , and let  Ως be bisected at Ϙ. Since then [the ratio] the latus 
transversum  to the latus rectum is greater than [the ratio] ΡΟ to ΟΝ, also [the 
ratio] Ω� to �ς is greater than [the ratio] ΡΟ to ΟΝ. 
And componendo [the ratio] Ως to ς� is greater than [the ratio] ΡΝ to ΝΟ. 
 Let the center of the circle be Φ, and so also [the ratio] Ϙς to ς� is 
greater than [the ratio] ΦΝ to ΝΟ.  
 And separando [the ratio]�Ϙ to �ς is grater than [the ratio] ΦΟ to ΟΝ. 
 Then let it be contrived that as �Ϙ is to �ς, so ΦΟ is to less than ΟΝ such 
as ΙΟ, and let ΙΞ and ΞΤ and ΦΨ be drawn parallel. Therefore as  �Ϙ is to �ς, so 
ΦΟ is to ΟΙ, and is to ΨΣ is to ΣΞ, and componendo as  Ϙς is to ς�,  so ΨΞ is to 
ΞΣ. 
 Doubling the antecedents, as Ως is to ς�, so ΤΞ is to ΞΣ.  
 Separando as Ω� is to �ς or the latus transversum  to the latus rectum, 
so ΤΣ is to ΣΞ. 
 Then let ΜΞ and ΞΠ be joined, and let the angle ΑΕΚ be made on ΑΕ at Ε 
equal to the angle ΜΠΞ, and through Κ let ΚΘ be drawn touching the section  
[according to Proposition II.49], and let ΚΛ be dropped as an ordinate. Since 
then the angle ΜΠΞ is equal to the angle ΑΕΚ, and the right angle at Σ is equal 
to the right angle at Λ, therefore the triangle ΞΣΠ is equiangular with the trian-
gle ΚΕΛ. And as the latus transversum is to the latus rectum, so ΤΣ is to ΣΞ, 
that is pl.ΤΣΞ is to sq.ΕΞ, that is pl.ΜΞ,ΣΠ is to sq.ΣΞ. Therefore the triangle 
ΚΛΕ is similar to the triangle ΣΞΠ, and the triangle ΜΞΠ [is similar] to the trian-
gle ΚΘΕ and therefore the angle ΜΞΠ is equal to the angle ΘΚΕ. 
 But the angle ΜΞΠ is equal to the angle ΜΝΠ is equal to the angle Χ,  
therefore also the angle ΘΚΕ is equal to the angle Χ. And therefore the 
adjacent angle ΗΚΕ is equal to the adjacent angle Υ. Therefore ΗΘ has been 
drawn across tangent to the section and making with the diameter ΚΕ drawn 
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through the point of contact, the angle ΗΚΕ equal to the given angle Υ, and this 
it was required to do 61. 
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BOOK THREE 
 

[Proposition] 1 
 

 If straight lines touching a section of a cone or the circumference of a cir-
cle meet, and diameters are drawn through the points of contact meeting the 
tangents, the resulting vertically related triangles will be equal1 . 
 Let there be the section of a cone or the circumference of a circle ΑΒ, 
and let ΑΓ and ΒΔ meeting at Ε touch ΑΒ, and let the diameters of the section 
ΓΒ and ΔΑ be drawn through Α and Β meeting the tangents at Γ and Δ. 
 I say that the triangle ΑΔΕ is equal to the triangle ΕΒΓ. 
 [Proof]. For let ΑΖ  be drawn from Α parallel to ΒΔ, therefore it has  been 
dropped as an ordinate [according to Proposition I.32]. Then in the case of the 
parabola [according to Proposition I.42] the parallelogram  ΑΔΒΖ is equal to the  
triangle ΑΓΖ, and with the common area ΑΕΒΖ subtracted, the triangle ΑΔΕ is 
equal to the triangle ΓΒΕ. 
    And in the case of the other sections let the diameters meet at the center Η. 
Since then ΑΖ has been dropped as an ordinate, and ΑΓ touches [according to 
Proposition I.37] pl.ΖΗΓ is equal to sq.ΒΗ. Therefore as ΖΗ is to ΗΒ, so ΒΗ is to 
ΗΓ, therefore also [according to the porism to Proposition VI.19 of Euclid] as 
ΖΗ is to ΗΓ, so sq.ΖΗ is to sq.ΗΒ. 
 But [according to Proposition VI.19 of Euclid] as sq.ΖΗ is to sq.ΗΒ, so the 
triangle ΑΗΖ is to the triangle ΔΗΒ, and as ΖΗ is to ΗΓ, so the triangle ΑΗΖ is to 
the triangle ΑΗΓ, therefore also as the triangle ΑΗΖ is to the triangle ΑΗΓ, so 
the triangle ΑΗΖ is to the triangle ΔΗΒ. Therefore the triangle ΑΗΓ is equal to 
the triangle ΔΗΒ. 
 Let the common area ΑΗΒΖ be subtracted, therefore as remainders, the 
triangle ΑΕΔ is equal to the triangle ΓΕΒ. 
 

[Proposition] 2 
 

 With the same suppositions if some point is taken on the section of a 
cone or the circumference of a circle, and through it parallels to the tangents 
are drawn as far as the diameters, then the quadrangle under one of the tan-
gents, and one of the diameters will be equal to the triangle constructed on the 
same tangent and the other diameter 2 .   
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 Let there be the section of a cone or the circumference of a circle ΑΒ and 
let ΑΕΓ and ΒΕΔ be tangents, and ΑΔ and ΒΓ diameters, and let some point Η be 
taken on the section, and ΗΚΛ and ΗΜΖ be drawn parallel to the tangent. 
 I say  that the triangle ΑΙΜ is equal to the quadrangle ΓΛΗΙ. 
 [Proof]. For the triangle ΗΚΜ  [in Propositions I.42 and I.43] has been 
shown that it is equal to the quadrangle ΑΛ, let the common quadrangle ΙΚ be 
added or subtracted, and the triangle ΑΙΜ is equal to the quadrangle ΓΗ. 
 

[Proposition] 3 
 
 With the  same suppositions if two points are taken on the section or the 
circumference of a circle, and through them parallels to the tangents are drawn 
as far as the diameters, the quadrangles  under the straight lines drawn, and  
standing on the diameters as bases, are equal to each other 3. 
 Let there be the section and tangents and diameters as  said before, and 
let two points at random Ζ and Η be taken on the section, and through Ζ let the 
straight lines ΖΘΚΛ and ΝΖΙΜ be drawn parallel to the tangents, and through Η 
the straight lines ΗΞΟ and ΘΠΡ. 
 I say that the quadrangle ΛΗ is equal to the quadrangle ΜΘ, and  the  
quadrangle ΛΝ is equal to the quadrangle ΡΝ. 
 [Proof]. For since it has already been shown [in Proposition III.2] the  tri-
angle ΡΠΑ is equal to the quadrangle ΓΗ, and the triangle ΑΜΙ  is equal to the  
quadrangle ΓΖ, and the triangle ΡΠΑ is equal to the sum of the triangle ΑΜΙ and 
the quadrangle PM therefore also the quadrangle ΓΗ is equal to  the sum of the 
quadrangles ΓΖ and ΠΜ, and so the quadrangle ΓΗ is equal to the sum of the 
quadrangles ΓΘ and ΡΖ. 
 Let the common quadrangle ΓΘ be subtracted,  therefore as remainders 
the quadrangle ΛΗ is equal to  the quadrangle ΘΜ. 
 And therefore as wholes the quadrangle ΛΝ is equal to the quadrangle ΡΝ. 
 

[Proposition] 4 
 

 If  two straight lines touching opposite hyperbolas meet each other, and 
diameters are drawn through the points of contact meeting the tangents, then 
the triangles at the tangents will be equal 4 . 
 Let there be the opposite hyperbolas Α and Β and let the tangents to 
them, ΑΓ and ΒΓ, meet at Γ, and let Δ be the center of the hyperbolas, and let 
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ΑΒ and ΓΔ be joined, and ΓΔ continued to Ε, and let ΔΑ and ΒΔ also be joined 
and continued to Ζ and Η. 
 I say that the triangle ΑΗΔ is equal to the triangle ΒΔΖ, and the triangle 
ΑΓΖ is equal to the triangle ΒΓΗ. 
 [Proof]. For let ΘΛ be drawn through Θ tangent to the section, therefore  
[according to Proposition I.44] it is parallel to ΑΗ. And since [according to 
Proposition I.30] ΑΔ is equal to ΔΘ, and [according to Proposition VI.19 of 
Euclid] the triangle ΑΗΔ is equal to the triangle ΔΘΛ. 
 But [according to Proposition III.1] the triangle ΔΘΛ is equal to the 
triangle ΒΔΖ, therefore also the triangle ΑΗΔ is equal to the triangle ΒΔΖ. 
 And so also the triangle ΑΓΖ is equal to the triangle ΒΓΗ. 
 

[Proposition] 5 
 

 If two straight lines touching opposite hyperbolas meet, and some point is 
taken on either of the hyperbolas, and from it two straight lines are drawn, one 
parallel to the tangent, other parallel to the line joining the points of contact, 
then the triangle constructed by them on the diameter drawn through the point 
of meeting differs from the triangle cut off at the point of meeting of the tan-
gents by the triangle cut off on the tangent and the diameter drawn through 
the point of contact 5.  
 Let there be opposite hyperbolas whose center is Γ, and let tangents ΕΔ 
and ΔΖ meet at Δ, and let ΕΖ and ΓΔ be joined, and let ΓΔ be continued, and let 
ΖΓ and ΕΓ  be joined and continued, and let some point Η be taken on the sec-
tion, and through it let ΘΗΚΛ be drawn parallel to ΕΖ, and ΗΜ parallel to ΔΖ. 
I say that the triangle ΗΘΜ differ from the triangle ΚΘΔ by the triangle ΚΛΖ. 
 [Proof].For since ΓΔ has been shown [in Propositions II.38 and II.39] to be 
a diameter of the opposite hyperbolas and [according to Definition 5 and Propo-
sition II.38] ΕΖ to be an ordinate to it, and ΗΘ  has been drawn parallel to ΕΖ, 
and ΜΗ parallel to ΔΖ, therefore the triangle ΗΘΜ differs from the triangle ΓΛΘ 
by the triangle ΓΔΖ [according to Propositions I.44 or I.45]. And so the triangle 
ΑΘΜ differs from the triangle ΚΘΔ by the triangle ΚΛΖ. And it is evident that 
the triangle ΚΛΖ is equal to the quadrangle ΜΗΚΔ. 
 

[Proposition] 6 
 

 With the same suppositions if some point is taken on one of the opposite 
hyperbolas, and from it parallels to the tangents are drawn meeting the tan-
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gents and the diameters, then the quadrangle  under one of the tangents and  
one of the diameters will be equal to the triangle constructed on the same tan-
gent and the other diameter 6. 
 Let there be opposite hyperbolas of which ΑΕΓ and ΒΕΔ are diameters, 
and let ΑΖ and ΒΗ touch the hyperbola ΑΒ meeting each other at Θ, and let 
some point Κ be taken on the section, and from it let  ΚΜΛ and ΚΝΞ be drawn 
parallel to the tangents. 
 I say that the quadrangle ΚΖ is equal to the triangle ΑΙΝ. 
 [Proof]. Now since ΑΒ and ΓΔ are opposite hyperbolas, and ΑΖ, meeting 
ΒΔ, touches the hyperbola ΑΒ, and ΚΛ has been drawn parallel to ΑΖ, therefore 
[according to Proposition III.2] the triangle ΑΙΝ is equal to the quadrangle ΚΖ. 
 

[Proposition] 7 
 

 With the same suppositions if points are taken on each of the hyperbolas, 
and from them parallels to the tangents are drawn meeting the tangents and 
the diameter, then the quadrangles  under the straight lines drawn and standing 
on the diameters as bases, will be equal to each other 7. 
 With the mentioned suppositions let Κ and Λ be taken on both hyperbola, 
and through them let ΜΚΠΡΧ and ΝΣΤΛΩ be drawn parallel to ΑΖ, and ΝΙΟΚΞ 
and ΧΦΥΛΨ parallel to ΒΗ. 
 I say that what was said in the enunciation will be so. 
 [Proof]. For since [according to Proposition III.2] the triangle ΑΟΙ is equal 
to the quadrangle ΡΟ, let the quadrangle ΕΟ be added to both, therefore the 
whole triangle ΑΕΖ is equal to the quadrangle ΚΕ. 
 But also [according to Proposition III.5] the triangle ΒΗΕ is equal to the 
quadrangle ΛΕ, and [according to Proposition III.1] the triangle ΑΕΖ is equal to 
the triangle ΒΗΕ, therefore the quadrangle ΛΕ is equal to the quadrangle ΙΚΡΕ. 
 Let the common quadrangle ΝΕ be added, therefore as the whole quad-
rangle ΤΚ is equal to  the quadrangle ΙΛ, and also the quadrangle ΚΥ is equal to 
the quadrangle ΡΛ. 

[Proposition] 8 
 

 With the same suppositions instead of Κ and Λ let there be taken Γ and 
Δ of which the diameters hit the hyperbolas, and through them the parallels to 
the tangents be drawn 8 .                            
 I say that the quadrangle ΔH is equal to the quadrangle ΖΓ, and the quad-
rangle ΞΙ is equal to the quadrangle ΟΤ. 
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 [Proof]. For since it was shown [in Proposition III.1] the triangle ΑΗΘ is 
equal to the triangle ΘΒΖ, and the straight line from Α to Β is parallel to the 
straight line from Η to Ζ, therefore as ΑΕ is to ΕΗ, so ΒΕ is to ΕΖ, and conver-
tendo as ΕΑ is to ΑΗ, so ΕΒ is to ΒΖ. And also as ΓΑ is to ΑΕ, so ΔΒ is to ΒΕ for 
each is  double the other, therefore ex as ΓΑ is to ΑΗ, so ΔΒ is to ΒΖ. And the 
triangles are similar because of the parallels, therefore [according to Proposition 
VI.19 of Euclid] as the triangle ΓΤΑ is to the triangle ΑΘΗ, so the triangle ΞΒΔ is 
to the triangle ΘΒΖ. And alternately [as the triangle ΓΤΑ is to the triangle ΞΒΔ, 
so the triangle ΑΘΗ is to the triangle ΘΒΖ]. But [according to Proposition III.1] 
the triangle ΑΘΗ is equal to the triangle ΘΒΖ, therefore the triangle ΓΤΑ is equal 
to the triangle ΞΒΔ. 
 As parts of these it was shown that the triangle ΑΘΗ is equal to the 
triangle ΘΒΖ, therefore also as remainders of the quadrangle ΔΘ is equal to the 
quadrangle ΓΘ. And so also the quadrangle ΔΗ is equal to the quadrangle ΓΖ. 
And since ΓΟ is parallel to ΑΖ, the triangle ΓΟΕ is equal to the triangle ΑΕΖ. 
 And likewise also the triangle ΔΕΙ is equal to the triangle ΒΕΗ.  
But [according to Proposition III.1] the triangle ΒΕΗ is equal to the triangle ΑΕΖ, 
therefore also the triangle ΓΟΕ is equal to the triangle ΔΕΙ. And also the quad-
rangle ΔΗ is equal to the quadrangle ΓΖ. 
 Therefore as wholes the quadrangle ΞΙ is equal to the quadrangle ΟΤ. 
 

[Proposition] 9 
 

 With the same suppositions if one of the points is between the diameters 
as Κ and other is the same with one of Γ and Δ, for instance Γ, and the parallels 
are drawn. I say that the triangle ΓΕΟ is equal to the quadrangle ΚΕ, and the 
quadrangle ΛΟ is equal to the quadrangle ΛΜ 9. 
 And this is evident for since it was shown that the triangle ΓΕΟ is equal to 
the triangle ΑΕΖ, and [according to Proposition III.5] the triangle ΑΕΖ is equal to 
the quadrangle ΚΕ,therefore also the triangle ΓΕΟ is equal to the quadrangle ΚΕ 
And so also the triangle ΓΡΜ is equal to the quadrangle ΚΟ, and the quadrangle 
ΚΓ is equal to the quadrangle ΛΟ. 
 

[Proposition] 10 
 

 With the same suppositions let Κ and Λ be taken not as points at which 
the diameters hit the hyperbolas. Then it is to be shown that the quadrangle 
ΛΤΡΧ is equal to the quadrangle ΩΧΚΙ 10. 
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 [Proof]. For since ΑΖ and ΒΗ touches and ΑΕ and ΒΕ are diameters 
through the points of contact, and ΛΤ and KI are parallel to the tangents, [ac-
cording to Proposition I.44] the triangle ΤΥΕ is equal to the sum of the triangles 
ΥΩΛ and ΕΖΑ. And likewise also the triangle ΞΕΙ is equal to the sum of the tri-
angle ΞΡΚ and ΒΕΗ. 
 But [according to Proposition III.1] the triangle ΕΖΑ is equal to the 
triangle ΒΕΗ, therefore the triangle ΤΥΕ without the triangle ΥΩΛ is equal to the 
triangle ΞΕΙ without the triangle ΞΡΚ. 
 Therefore the sum of the triangles ΤΥΕ and ΞΡΚ is equal to the sum of 
the triangles ΞΕΙ and ΥΩΛ. 
 Let the common area ΚΞΕΥΛΧ be added, therefore the quadrangle ΛΤΡΧ 
is equal to the quadrangle ΩΧΚΙ. 
 

[Proposition] 11 
 

 With the same suppositions if some point is taken on either of the hyper-
bolas, and from it parallels are drawn, one parallel to the tangent and other par-
allel to the straight line joining the points of contact, then the triangle con-
stricted by them on the diameter drawn through the point of meeting of the 
tangents differs from the triangle cut off on the tangent and the diameter 
drawn through the point of contact by the triangle cut off at the point of meet-
ing of the tangents11. 
 Let there be the opposites hyperbola ΑΒ and ΓΔ, and let the tangents ΑΕ 
and ΔΕ meet at Ε, and let the center be Θ, and let ΑΔ and ΕΘΗ be joined, and 
let some point Β be taken at random on the hyperbola ΑΒ, and through it let 
ΒΖΛ has been dropped to ΕΖ parallel to ΑΗ, and ΒΜ parallel to ΑΕ. 
       I say that the triangle ΒΖΜ differs from the triangle ΑΚΛ by the triangle 
ΚΕΖ 
 [Proof]. For it is evident that ΑΔ is bisected by ΕΘ [according to Proposi-
tions II.29 and II.39], and that ΕΘ is a diameter conjugate to the diameter drawn 
through Θ parallel to ΑΔ [according to Proposition II.38], and so ΑΗ is an ordi-
nate to ΕΗ [according to Definition 6]. 
 Since then ΗΕ is a diameter, and ΑΕ touches, and ΑΗ is an ordinate, and 
with the point Β taken on the hyperbola ΑΒ, let  ΒΖ be dropped to ΕΗ parallel to 
ΑΗ and ΒΜ  parallel to ΑΕ, therefore it is clear that [according to Propositions 
II.43 and II. 45] the triangle ΒΜΖ differs from the triangle ΛΘΖ by the triangle 
ΛΘΖ by the triangle ΘΑΕ.  
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And so also the triangle ΒΜΖ differs from the triangle ΑΚΛ by the triangle 
ΚΖΕ. 
 And it has been proved at the same time that the quadrangle ΒΚΕΜ is 
equal to the triangle ΛΚΑ. 
 

 [Proposition] 12 
 

 With the same suppositions if of one  hyperbola two points are taken  and 
parallels are drawn from each of them, likewise the quadrangles under them will 
be equal 12. 
  Let there be the same suppositions as before, and let Β and Κ be taken 
at random on the hyperbola ΑΒ, and through them let ΛΒΜΝ and ΚΞΟΥΠ be 
drawn parallel to ΑΔ, and ΒΞΡ and ΛΚΣ parallel to ΑΕ. 
 I say that the quadrangle ΒΠ is equal to the quadrangle ΚΡ. 
 [Proof]. For since it has been shown [according to Proposition III.11] that 
the triangle ΑΟΠ is equal to the quadrangle ΚΟΕΣ, and the triangle ΑΜΝ is equal 
to the quadrangle ΒΕΜΡ, therefore, as remainder, either the quadrangle ΚΡ  
without the quadrangle ΒΟ is equal to ΜΠ or the sum of the quadrangles ΚΡ and 
ΒΟ is equal to the quadrangle ΜΠ. 
And with the common quadrangle ΒΟ added or subtracted the quadrangle ΒΡ is 
equal to the quadrangle ΞΣ. 
 

[Proposition] 13  
 

 If in conjugate opposite hyperbolas straight line tangent to the adjacent 
hyperbola meet, and diameters are drawn through the points of contact, then 
the triangles whose common vertex  is the center of the opposite hyperbolas 
will be equal  13 .  
 Let there be conjugate opposite hyperbolas on which there are the points 
Α, Β, Γ, and Δ, and let ΒΕ and ΕΚ meeting at Ε touch the hyperbolas Α and Β, 
and let Θ be the center, and let ΑΘ and ΒΘ be joined and continued to Δ and Γ. 
 I say that the triangle ΒΖΘ is equal to the triangle ΑΗΘ. 
 [Proof]. For let ΑΚ and ΛΘΜ be drawn through Α and Θ parallel to ΒΕ. 
Since then ΒΖΕ touches the hyperbola Β, and ΔΘΒ is a diameter through the 
point of contact, and ΛΜ is parallel to ΒΕ, ΛΜ a diameter conjugate to the di-
ameter ΒΔ, the so-called second diameter [according to Proposition II.20], and 
therefore  ΑΚ  has been drawn as an ordinate to ΒΔ. And ΑΗ touches, therefore  
[according to Proposition I.38] pl.ΚΘΗ is equal to sq.ΒΘ . 
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 Therefore as ΚΘ is to ΘΒ, so ΒΘ is to ΗΘ. But as ΚΘ is to ΘΒ, so ΚΑ is to 
ΒΖ, and ΑΘ is to ΘΖ, therefore also as ΑΘ is to ΘΖ, so ΒΘ is to ΗΘ.. 
 And the angles ΒΘΖ and ΗΘΖ are equal to two right angles, therefore the 
triangle ΑΗΘ is equal to the triangle ΒΘΖ 
 

[Proposition] 14 
 

 With the same suppositions if some point is taken on any one of the hy-
perbola, and from it parallels to the tangents are drawn as far as the diameters, 
then the triangle constructed at the center will differ from the triangle con-
structed about the same angle by the triangle having the tangent as base, and 
center as vertex 14. 
 Let the other be the same, and let some point Ξ be taken on the hyper-
bola Β, and through it let ΞΡΣ be drawn parallel to ΑΗ and ΞΤΟ parallel to ΒΕ. I 
say that the triangle ΟΘΤ differs from the triangle ΞΣΤ by the triangle ΘΒΖ 
 [Poof]. For let ΑΥ be drawn from Α parallel to ΒΖ. Since then, because of 
the same reasons as before, ΛΘΜ is a diameter of the hyperbola ΑΛ, and ΔΘΒ is 
a second diameter conjugate to it [according to Proposition II.2O] and ΑΗ is a 
tangent at Α, and ΑΥ has been dropped parallel to ΛΜ, therefore [according to 
Proposition I.40 the ratio] ΑΥ to ΥΗ is compounded of [the ratios] ΘΥ to ΥΑ 
and the latus transversum of the eidos corresponding to ΛΜ to the latus rec-
tum. 
 But as ΑΥ is to ΥΗ, so ΞΤ is to ΤΣ, and as ΘΥ is to ΥΑ, so ΘΤ is to ΤΟ, and 
ΘΒ is to ΒΖ, and [according to Proposition I.60] as the latus transversum of the 
eidos corresponding to ΛΜ is to the latus rectum, so the latus rectum of the ei-
dos corresponding to ΒΔ  is to the latus transversum. 
 Therefore [the ratio] ΞΤ to ΤΣ is compounded of [the ratios] ΘB to ΒΖ 
and the latus rectum of the eidos corresponding to ΒΔ to the latus transversum 
or [the ratio] ΞΤ to ΤΣ is compounded of [the ratios] ΘΤ to ΤΟ and the latus  
rectum of the eidos corresponding to ΒΔ to the latus transversum. 
 And by the shown in the theorem 41 of Book I [that is Proposition I.41] 
the triangle ΤΘΟ differs from the triangle ΞΤΣ by the triangle ΒΖΘ. 
 And so also [according to Proposition III.13] by the triangle ΑΗΘ. 
 

[Proposition] 15 
 

 If straight lines touching one of the conjugate opposites hyperbolas meet, 
and diameters are drawn through the points of contact, and some point is taken 
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on one of the conjugate hyperbolas, and from it parallels to the tangents are 
drawn as far as the diameters, then the triangle constructed by them at the hy-
perbola is greater  than the triangle constructed at the center by the triangle 
having the tangent as base and the center of the opposite hyperbolas as ver-
tex15. 
 Let there be conjugate opposite hyperbolas ΑΒ, ΗΣ, Τ, and Ξ whose cen-
ter is Θ and let ΑΔΕ and ΒΔΓ touch the hyperbola ΑΒ, and let the diameters 
ΑΘΖΦ and ΒΘΤ be drawn through the points of contact Α and Β, and let some 
point Σ  be taken on the hyperbola ΗΣ, and through it let ΣΖΛ be drawn parallel 
to ΒΓ and ΣΥ parallel to ΑΕ. 
     I say that the triangle ΣΛΥ is equal to the sum of the triangles ΘΛΖ and ΘΓΒ. 
 [Proof]. For let ΞΘΗ be drawn through Θ parallel to ΒΓ, and ΚΙΗ through Η 
parallel to ΑΕ, and ΣΟ parallel to ΒΤ, then it is evident that ΞΗ is a diameter con-
jugate to ΒΤ [according to Proposition II.20], and that ΣΟ is parallel to ΒΤ 
dropped as an ordinate to ΘΗΟ, and that ΣΛΘΟ is a parallelogram. 
 Since then ΒΓ touches, and ΒΘ is through the point of contact, and ΑΕ is 
another tangent, let it be contrived that as ΔΒ is to ΒΕ, so ΜΝ is to double ΒΓ, 
therefore ΜΝ is the so-called the latus rectum of the eidos corresponding to ΒΤ 
[according to Proposition I.50]. Let ΜΝ be bisected at Π, therefore as ΔΒ is to 
ΒΕ, so ΜΠ is to ΒΓ. 
 Then let it be contrived that as ΞΗ is to ΤΒ, so ΤΒ is to Ρ, then Ρ also will 
be so-called the latus rectum of the eidos applied to ΞΗ [according to Proposi-
tions I.16 and I.60]. 
 Since then as ΔΒ is to ΒΕ, so ΜΠ is to ΒΓ, but as ΔΒ is to ΒΕ, so sq.ΔΒ is 
to pl.ΔΒΕ, and as ΜΠ is to ΒΓ, so pl.ΜΠ,ΒΘ is to pl.ΓΒΘ, therefore as sq.ΔΒ is to 
pl.ΔΒΕ, so pl.ΜΠ,ΒΘ is to pl.ΓΒΘ. And pl.ΜΠ,ΒΘ is equal to sq.ΘΗ because as  
sq.ΔΒ is to pl.ΔΒΕ, so pl.ΜΠ,ΒΘ is to pl.ΓΒΘ. And pl.ΜΠ,ΒΘ is equal to sq.ΘΗ,  
because [according to Proposition I.16] sq.ΞΗ is equal to pl.ΤΒ,ΜΝ, and 
pl.ΜΠ,ΒΘ is equal to the quarter of pl.ΤΒ,ΜΝ ,and sq.ΘΗ is equal to the quarter 
of sq.ΞΗ, therefore as sq.ΔΒ is to pl.ΔΒΕ, so sq.ΘΗ is to pl.ΓΒΘ. And 
correspondingly sq.ΔΒ is to sq.ΘΗ, so pl.ΔΒΕ is to pl.ΓΒΘ . But as sq.ΔΒ is to 
sq.ΘΗ, so the triangle ΔΒΕ is to the triangle ΗΘΙ  for they are similar, and as 
pl.ΔΒΕ is to pl.ΓΒΘ, so the triangle ΔΒΕ is to the triangle ΓΒΘ, therefore as the 
triangle ΔΒΕ is to the triangle ΗΘΙ, so the triangle ΔΒΕ is to the triangle ΓΒΘ.  
 Therefore the triangle  ΗΘΙ is equal to the triangle ΓΒΘ. 
 Again since [the ratio] ΘΒ to ΒΓ is compounded of [the ratios] ΘΒ to 
ΜΠ and ΜΠ to ΒΓ, but as ΘΒ is to ΜΠ, so ΤΒ is to ΜΝ, and Ρ to ΞΗ, and as ΜΠ 
is to ΒΓ, so ΔΒ is to ΒΕ, therefore [the ratio] ΘΒ to ΒΓ is compounded of [the 
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ratios] ΔΒ to ΒΕ and Ρ to ΞΗ. And since ΒΓ is parallel to ΣΛ, and the triangle 
ΘΓΒ is similar to the triangle ΘΛΖ, and as ΘΒ is to ΒΓ, so ΘΛ is to ΛΖ, therefore 
[the ratio] ΘΛ to ΛΖ is compounded of [the ratios] Ρ to ΞΗ and ΔΒ to ΒΕ or [the 
ratio] ΘΛ to ΛΖ is compounded of [the ratios] Ρ to ΞΗ and ΘΗ to ΗI. 
 Since then ΗΣ is a hyperbola having ΞΗ as a diameter, and Ρ as the 
latus rectum, and from some point Σ let ΣΟ be dropped as an ordinate, and the 
figure ΘΙΗ let be described on the radius ΘΗ, and the figure ΘΛΖ let be de-
scribed on the ordinate ΣΟ or its equal ΘΛ, and on  ΘΟ the straight line between 
the center and the ordinate, or on ΣΛ, its equal, the figure ΣΛΥ let be described 
similar to the figure ΘΙΗ described on the radius, and there are compounded ra-
tios as already given, therefore the triangle ΣΛΥ is equal to the sum of the tri-
angles ΘΛΖ and ΘΓΒ [according to Proposition I.41]. 
 
                                                [Proposition] 16 
 
  If two straight lines touching a section of a cone or the circumfer-
ence of a circle meet, and from some point on the section a straight line is 
drawn parallel to one tangent and cutting the section and the other tangent, 
then as the squares on the tangents are to each other, so the plane under the 
straight lines between the section and the tangent will be to the square cut off 
at the point of contact 16. 

 Let there be the section of a cone or the circumference of a circle 
ΑΒ, and let ΑΓ and ΓΒ meeting at Γ touch it, and let some point Δ be taken on 
the section ΑΒ,  and through it let ΕΔΖ be drawn parallel to ΓΒ. 
 I say that as sq.ΒΓ is to sq.ΑΓ, so pl.ΖΕΔ is to sq.ΕΑ. 
 [Proof]. For let the diameters ΑΗΘ and ΚΒΛ be drawn through Α and 
Β, and ΔΜΝ through Δ parallel to ΑΛ, it is at once evident that [according to 
Propositions I.46 and I.47] ΔΚ is equal to ΚΖ, and [according to Proposition III.2] 
the triangle ΑΕΗ is equal to the quadrangle ΛΔ, and [according to Proposition 
III.1] the triangle ΒΛΓ is equal to the triangle ΑΓΘ. Since then  ΔΚ is equal to ΚΖ 
and ΔΕ  added, as the sum of pl.ΖΕΔ and sq.ΔΚ is equal to sq.ΚΕ. And since the 
triangle ΕΛΚ is similar to the triangle ΔΝΚ, as sq.ΕΚ is to sq.ΚΔ, so the triangle 
ΕΚΛ is to the triangle ΔΝΚ. And alternately as the whole sq.ΕΚ is to  the whole  
triangle ΕΛΚ, so the sum of the subtracted part of sq.ΔΚ is to the subtracted 
part of the triangle ΔΝΚ.Therefore also as the remainder of pl.ΖΕΔ is to the re-
mainder of the quadrangle ΔΛ, so sq.ΕΚ is to the triangle ΕΛΚ. But as sq.ΕΚ is 
to the triangle ΕΛΚ, so sq.ΓΒ is to the triangle ΒΛΓ, therefore also as pl.ΖΕΔ is 
to the quadrangle ΛΔ, so sq.ΓΒ is to the triangle ΛΓΒ. But the quadrangle ΛΔ is 
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equal to the triangle ΑΕΗ, and the triangle ΒΛΓ is equal to the triangle ΑΓΘ, 
therefore also as pl.ΖΕΔ is to sq.ΓΒ, so the triangle ΑΕΗ is to the triangle 
ΑΓΘ.Alternately [as pl.ΖΕΔ is to sq.ΕΑ, so sq.ΓΒ is to sq.ΑΓ]. 
 

[Proposition] 17 
 
 If two straight lines touching a section of a cone or the circumfer-
ence of a circle meet, and two points are taken at random on the section, and 
from them in the section are drawn parallel to the tangents  straight lines cut-
ting each other and the line of the section, then as the squares on the tangents 
are to each other, so will the rectangular planes under the straight lines taken  
similarly 17.                
 Let there be the section of a cone or the circumference of a circle 
ΑΒ, and tangents to ΑΒ,ΑΓ and ΓΒ meeting at Γ, and let Δ and Ε be taken at 
random on the section, and through them at ΕΖΙΚ and ΔΖΗΘ be drawn parallel 
to ΑΓ and ΓΒ. 
 I say that as sq.ΓΑ is to sq.ΓΒ, so pl.ΚΖΕ is to pl.ΘΖΔ.  
 [Proof]. For let the diameters ΑΛΜΝ and ΒΟΞΠ be drawn through Α 
and Β, and let the tangents and parallels be continued to the diameters, and let 
ΔΞ and ΕΜ be drawn from Δ and Ε parallel to the tangents, then it is evident 
that [according to Propositions i.46 and i.47] ΚΙ is equal to ΙΕ, ΘΗ is equal to 
ΗΔ. Since then ΚΕ has been cut  equally at I and unequally at Ζ [according to 
Proposition II.5 of Euclid] the sum of pl.ΚΖΕ and sq.ΖΙ is equal to sq.ΕΙ . And 
since the triangles are similar because of the parallels, as the whole sq.ΕΙ is to 
the whole triangle ΙΜΕ, so the subtracted part of sq.IZ is to the subtracted part 
of the triangle ΖΙΛ. Therefore also as  the remainder of pl.ΚΖΕ is to the remain-
der of the quadrangle ΖΜ, so the whole sq.ΕΙ is to the whole triangle ΙΜΕ. But 
as sq.ΕΙ is to the triangle ΙΜΕ, so sq.ΓΑ is to the triangle ΓΑΝ. Therefore as 
pl.ΚΖΕ is to the quadrangle ZM, so sq.ΓΑ is to the triangle ΓΑΝ. But the triangle 
ΓΑΝ is equal to the triangle ΓΠΒ [according to Proposition III.1] and the quad-
rangle ΖΜ is equal to the quadrangle ΖΞ [according to Proposition III.3], there-
fore as pl.ΚΖΕ is to the quadrangle ΖΞ, so sq.ΓΑ is to the triangle ΓΠΒ. Then 
likewise it could be shown that as pl.ΘΖΔ is to the quadrangle ΖΞ, so sq.ΓΒ is to 
the triangle ΓΠΒ.  Since then as pl.ΚΖΕ is to the quadrangle ΖΞ, so sq.ΓΑ is to 
the triangle ΓΠΒ, and inversely as the quadrangle ΖΞ is to pl.ΘΖΔ, so the triangle 
ΓΠΒ is to sq.ΓΒ, therefore ex as sq.ΓΑ is to sq.ΓΒ, so pl.ΚΖΕ is to pl.ΘΖΔ. 
 

[Proposition] 18 
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 If two  straight lines touching opposite hyperbolas meet, and some 
point is taken on either one of the hyperbolas, and from it some straight line is 
drawn parallel to one of the tangents cutting the section and the other tangent, 
then as the squares on the tangents are to each other, so will the rectangular 
plane under the straight lines between the section and the tangent be to the 
square on the straight line cut off at the point of contact 18. 
 Let there be the opposite hyperbolas ΑΒ and ΜΝ, the tangents ΑΓΛ 
and ΒΓΘ, and through the points of contact the diameters ΑΜ and ΒΝ, and let 
some point Δ be taken at random on the hyperbola ΜΝ, and through it let ΕΔΖ 
be drawn parallel to ΒΘ. 
 I say that as sq.ΒΓ is to sq.ΓΑ, so pl.ΖΕΔ is to sq.ΑΕ . 
 [Proof]. For let ΔΞ be drawn through Δ parallel to ΑΕ. Since then ΑΒ 
is a hyperbola and BN its diameter and ΒΘ a tangent and ΔΖ parallel to ΒΘ,  
therefore [according to Proposition I.48] ΖΟ is equal to ΟΔ. And ΕΔ is added, 
therefore [according to Proposition II.6 of Euclid] the sum of pl.ΖΕΔ and sq.ΔΟ is 
equal to sq.ΕΟ. And since ΕΛ is parallel to ΔΞ, the triangle ΕΟΛ is similar to the 
triangle ΔΞΟ. Therefore as the whole sq.ΕΟ is to the whole triangle ΕΟΛ, so the 
subtracted part of sq.ΔΟ is to the subtracted part of the triangle ΔΞΟ, therefore 
also as the remainder of pl.ΔΕΖ is to the remainder of the quadrangle ΔΛ, so 
sq.ΕΟ is to the triangle ΕΟΛ. But as sq.ΟΕ is to the triangle ΕΟΛ, so sq.ΒΓ is to 
the triangle ΒΓΛ, therefore also as pl.ΖΕΔ is to the quadrangle ΔΛ, so sq.ΒΓ is to 
the triangle ΒΓΛ. And [according to Proposition III.6] the quadrangle ΔΛ is equal 
to the triangle ΑΕΗ, and [according to Proposition III.1] the triangle ΒΓΛ is equal 
to the triangle ΑΓΘ, therefore as pl.ΖΕΔ is to the triangle ΑΕΗ, so sq.ΒΓ is to 
the triangle ΑΓΘ. But also as the triangle ΑΕΗ is to sq.ΕΑ, so the triangle ΑΓΘ is 
to sq.ΑΓ, therefore ex as sq.ΒΓ is to sq.ΑΓ, so pl.ΖΕΔ is to  sq.ΕΑ. 
 

[Proposition] 19 
 
 If two straight lines touching opposite hyperbolas meet parallels to 
the tangents are drawn cutting each  other and the section, then as the squares 
on the tangents are each other, so will the rectangular plane under the 
straight lines between the section and the point of meeting of the straight lines 
be to the rectangular plane under the straight lines taken similarly 19. 
 Let there be the opposite hyperbolas whose diameters are ΑΓ and ΒΔ 
and the center at Ε, and let the tangents ΑΖ and ΖΔ meet at Ζ, and let ΗΘΙΚΛ 
and ΜΝΞΟΛ be drawn  from any points parallel to ΑΖ and ΖΔ. 
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 I say that as sq.ΑΖ is to sq.ΖΔ, so pl.ΗΛΙ is to pl.ΜΛΞ. 
        [Proof]. Let ΙΠ and ΞΡ be drawn through I and Ξ parallel to ΑΖ and ΖΔ. And 
since as sq.ΑΖ is to the triangle ΑΖΣ, so sq.ΘΛ is to the triangle ΘΛΟ, and sq.ΘΙ 
is to the triangle ΘΙΠ, therefore as the remainder of pl.ΗΛΙ is to the remainder 
of the quadrangle ΙΠΟΛ, so sq.ΑΖ is to the triangle ΑΖΣ. But [according to 
Proposition III.4] the triangle ΑΖΣ is equal to the triangle ΔΤΖ, and [according to 
Proposition III.7] the quadrangle ΙΠΟΛ is equal to the quadrangle ΚΡΞΛ, there-
fore also as sq.ΑΖ is to the triangle ΔΤΖ, so pl.ΗΛΙ is to the quadrangle ΑΡΞΛ . 
But [likewise] as the triangle ΔΤΖ is to sq.ΖΔ, so the quadrangle ΚΡΞΛ is to 
pl.ΜΛΞ, and therefore ex as sq.ΑΖ is to sq.ΖΔ, so pl.ΗΛΙ is to pl.ΜΛΞ. 
 

[Proposition] 20 
 

 If two  straight lines touching the opposite hyperbolas meet, and 
through the point of meeting some straight line is drawn parallel to the straight 
line joining the points of contact and meeting each of the hyperbolas, and some 
other straight line is drawn  parallel to the same straight line and cutting the 
hyperbolas and the tangents, then as the rectangular plane under the straight 
lines drawn from the point of meeting to cut the hyperbolas is to the square on 
the tangent, so is the rectangular plane under the straight lines between the  
hyperbolas and the tangent to the square on the straight line cut off at the 
point of contact 20. 
 Let there be the opposite hyperbolas ΑΒ and ΓΔ whose center is Ε 
and tangents ΑΖ and ΓΖ, and let ΑΓ be joined, and let ΕΖ and ΑΕ be joined and 
continued, and let ΒΖΘ be drawn through Ζ parallel to ΑΓ, and let the point Κ be 
taken at random, and through it let ΚΛΣΜΝΞ be drawn parallel to ΑΓ. 
 I say that as pl.ΒΖΔ is to sq.ΖΑ, so pl.ΚΛΞ is to sq.ΑΛ. 
 [Proof]. For let ΚΠ and ΒΡ be drawn from Κ and B parallel to ΑΖ.  
Since then as sq.ΒΖ is to the triangle ΒΖΡ, so sq.ΚΣ is to the triangle ΚΣΠ, so 
sq.ΛΣ is to the triangle ΛΣΖ, and as sq.ΚΣ is to the triangle ΚΣΠ, so the remain-
der of pl.ΚΛΞ  [according to Proposition II.5 of Euclid] is to the remainder of the 
quadrangle ΚΛΖΠ [according to Proposition V.19 of Euclid] and ΒΖ is equal to 
pl.ΒΖΔ [according to Propositions II.38 and II 39] and the triangle ΒΡΖ is equal 
to the triangle ΑΖΘ [according to Proposition III.11], therefore as pl.ΒΖΔ is to 
the triangle ΑΖΘ, so pl.ΚΛΞ is to the triangle ΑΛΝ. 
 And as pl.ΒΖΔ is to sq.ΖΑ, so pl.ΚΛΞ is to sq.ΑΛ. 
 

[Proposition] 21 
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 With the same suppositions if two points are taken on the section, 
and through them straight lines are drawn, one parallel to the tangent, other 
parallel to the straight line joining the points of contact and cutting each other 
and the hyperbolas, then as the rectangular plane under the straight lines drawn 
from the point of meeting to cut hyperbola is to the square on the tangent, so 
will the rectangular plane under the straight lines between the section and the 
point of meeting 21. 
 Let there be the same suppositions as before, and let Η and Κ be 
taken, and through them let ΝΞΗΟΠΡ and ΚΣΤ be drawn parallel to ΑΖ, and ΗΛΜ 
and ΚΟΦΙΧΨΩ parallel to ΑΓ. 
 I say that as pl.ΒΖΔ is to sq.ΖΑ, so pl.ΚΟΩ is to pl.ΝΟΗ. 
 [Proof]. For since as sq.ΑΖ is to the triangle ΑΖΘ, so sq.ΑΛ is to the 
triangle ΑΛΜ, and sq.ΞΟ is to the triangle ΞΟΨ, and as sq.ΞΟ is to the triangle 
ΞΟΨ, so sq.ΞΗ is to the triangle ΞΗΜ, therefore the whole sq.ΞΟ is to the whole 
triangle ΞΟΨ, so the subtracted part of sq.ΞΗ is to the subtracted part of the 
triangle ΞΗΜ, therefore also as the remainder of pl.ΝΟΗ is to the remainder of 
the quadrangle ΗΟΨΜ, so sq.ΑΖ is to the triangle ΑΖΘ.  
 But [according to Proposition III.11] the triangle ΑΖΘ is equal to the 
triangle ΒΥΖ and [according to Proposition III.12] the quadrangle ΗΟΨΜ is equal 
to the quadrangle ΚΟΡΤ, therefore as sq.ΑΖ  is to the triangle ΒΖΥ, so pl.ΝΟΗ is 
to the quadrangle ΚΟΡΤ. But it was shown [in Proposition III.20] as the triangle 
ΒΥΖ is to sq.ΒΖ or pl.ΒΖΔ [according  to Propositions  II,38 and II.39], so the 
quadrangle ΚΟΡΤ is to pl.ΚΟΩ, therefore ex as sq.ΑΖ is to pl.ΒΖΔ, so  
pl.ΝΟΗ is to pl.ΚΟΩ.  And inversely as pl.ΒΖΔ is to sq.ΖΑ, so pl.ΚΟΩ is to 
pl.ΝΟΗ. 
 

[Proposition] 22 
 

 If two parallel straight lines touch opposite  hyperbolas, and  two 
straight lines are drawn cutting each other and the hyperbolas, one parallel to 
the tangent, other parallel to the straight line joining the points of contact, then 
as the latus transversum of the eidos corresponding to the straight line joining 
the points of contact is to the latus rectum, so the rectangular plane under the 
straight lines between the section and the point of meeting will be to the 
rectangular plane under the straight lines between the section and the point of 
meeting 22. 
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 Let there be the opposite hyperbolas Α and Β, and let ΑΓ and ΒΔ be 
parallel and tangent to them, and let ΑΒ be joined. Then let ΕΞΗ be drawn 
across parallel to ΑΒ and ΚΕΛΜ parallel to ΑΓ. 
        I say that as ΑΒ is to the latus rectum of the eidos, so pl.ΗΕΞ is to pl.ΚΕΜ. 
 [Proof]. Let ΞΝ and ΗΖ be drawn through Η and Ξ parallel to ΑΓ for 
since ΑΓ and ΒΔ are parallels tangent to the hyperbolas, ΑΒ is a diameter 
[according to Proposition II.31], and ΚΛ, ΞΝ, and ΗΖ are ordinates to it [accord-
ing to Proposition I.32]. Then [according to Proposition I.21] as ΑΒ is to the 
latus rectum, so pl.ΒΛΑ is to sq.ΛΚ, and so pl.ΒΝΑ is to sq.ΝΞ or sq.ΛΚ. There-
fore the whole pl.ΒΛΑ is to the whole sq.ΛΚ, so the subtracted part of pl.ΒΝΑ is 
to the subtracted part of sq.ΛΕ, or as pl.ΒΛΑ is to sq.ΛΚ, so pl.ΖΑΝ is to sq.ΛΕ 
for [according to Proposition I.21] ΝΑ is equal to ΒΖ, therefore also as the re-
mainder of pl.ΖΛΝ is to the remainder of pl.ΚΕΜ, so ΑΒ is to the latus rectum. 
But pl.ΖΛΝ is equal to pl.ΗΕΞ, therefore as ΑΒ, that is the latus transversum of 
the eidos, is to the latus rectum, so pl.ΗΕΞ is to pl.ΚΕΜ. 
 

[Proposition] 23 
 

 If in conjugate opposite hyperbolas two straight lines touching con-
trary hyperbolas meet in a hyperbola at random, and  two straight lines are 
drawn parallel to the tangents and cutting each other and the other  of opposite 
hyperbolas, then as the squares on the tangents are to each other, so the rec-
tangular plane under the straight lines between the section and the point of 
meeting will be to the rectangular plane under the straight lines similarly taken 
23. 
 Let there be the conjugate opposite hyperbolas ΑΒ, ΓΔ, ΕΖ, and  ΗΘ 
and their center Κ, and let ΑΦΓΛ and ΕΧΔΛ, tangents to the hyperbolas ΑΒ and 
meet at Λ, and let ΑΚ and ΕΚ be joined and continued to Β and Ζ, and let 
ΗΜΝΞΟ be drawn from H parallel to ΑΛ, and ΘΠΡΞΣ  from Θ parallel to ΕΛ. 
 I say that at sq.ΕΛ is to sq.ΛΑ, so pl.ΘΞΣ is to pl.ΗΞΟ. 
 [Proof]. For let ΣΤ be drawn through Σ parallel to ΑΛ, and ΟΥ from Ο 
parallel to ΕΛ. Since then ΒΕ is a diameter of the conjugate opposite hyperbolas 
ΑΒ, ΓΔ, ΕΖ, and ΗΘ, and ΕΛ touches the section, and ΘΣ has been drawn parallel 
to it, [according to Proposition II.20 and Definition 5] ΘΠ is equal to ΠΣ , and  
for the same reasons ΗΜ is equal to ΜΟ. And since as sq.ΕΛ is to the triangle 
ΕΦΛ, so sq.ΠΣ is to the triangle ΠΤΣ, and so sq.ΠΞ is to the triangle ΠΝΞ, also 
as the remainder of pl.ΘΞΣ is to the remainder of the quadrangle ΤΝΞΣ , so  
sq.ΕΛ is to the triangle ΦΛΕ. But [according to Proposition III.4] the triangle  
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ΕΦΛ is equal to the triangle ΑΛΧ, and [according to Proposition III.15] the quad-
rangle ΤΝΞΣ is equal to the quadrangle ΞΡΥΟ, therefore as sq.ΕΛ is to the trian-
gle ΑΛΧ, so pl.ΘΞΣ is to the quadrangle ΞΡΥΟ. But as the triangle ΑΧΛ is to 
sq.ΑΛ, so the quadrangle ΞΡΥΟ is to pl.ΗΞΟ, therefore ex as sq.ΕΛ is to sq.ΑΛ, 
so pl.ΘΞΣ is to pl.ΗΞΟ. 

[Proposition] 24  
 
   If in conjugate opposite hyperbolas two straight lines are drawn 
from the center to the hyperbolas, one of them is taken as the transverse di-
ameter and other as the upright diameter, and two straight lines are drawn par-
allel to two diameters and meeting each other and the hyperbolas, and the point 
of meeting of the straight lines is the place between four hyperbolas, then the 
rectangular plane under the segments of the parallel to the transverse diameter 
together with the plane under the segments of the parallels to the upright di-
ameter has the ratio which the square on the upright diameter has to the 
square on the transverse diameter, will be equal to the double square on the 
half of the transverse diameter 24 . 
 Let there be the conjugate opposite hyperbolas Α, Β, Γ, and Δ whose 
center is Ε, and from Ε let the transverse diameter ΑΕΓ and the upright diame-
ter ΔΕΒ be drawn through, and let ΖΗΘΙΚΛ and ΜΝΞΟΠΡ be drawn parallel to ΑΓ 
and ΔΒ and meeting each other at Ξ, and first let Ξ be within the angle ΣΕΦ or 
the angle ΥΕΤ. 
              I say that pl.ΖΞΛ together with pl.ΡΞΜ  has the ratio sq.ΔΒ to sq.ΑΓ  
is equal to the double sq.ΑΕ. 
 [Proof]. For let the asymptotes of the hyperbolas ΣΕΤ and ΥΕΦ be 
drawn, and through Α let ΣΗΑΦ tangent to the hyperbola be drawn. Since then 
[according to Propositions I.60 and II.1] pl.ΣΑΦ is equal to sq.ΔΕ, therefore as 
pl.ΣΑΦ is to sq.ΕΑ, so sq.ΔΕ is to sq.ΕΑ.  
 And [the ratio] pl.ΣΑΦ to sq.ΑΕ is compounded of [the ratios] ΣΑ to 
ΑΕ and ΦΑ to ΑΕ. 
               But as ΣΑ is to ΑΕ, so ΝΞ is to ΞΘ, and as ΦΑ is to ΑΕ, so ΠΞ is to 
ΞΚ; therefore [the ratio] sq.ΔΕ to sq.ΑΕ is compounded of [the ratio] ΝΞ to ΞΘ 
and ΠΞ to ΞΚ. 
 But [the ratio] ΠΞΝ to pl.ΚΞΘ is compounded of [the ratios] ΝΞ to 
ΞΘ and  ΡΞ to ΞΚ, therefore as sq.ΔΕ is to sq.ΑΕ, so pl.ΡΞΝ is to pl.ΚΞΘ. 
 Therefore also as [sq.ΔΕ is to sq.ΑΕ]25, so the sum of sq.ΔΕ and 
pl.ΡΞΝ 
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is to the sum of sq.ΑΕ and pl.ΚΞΘ. And sq.ΔΕ is equal to pl.ΠΜΝ [according to 
Proposition II.11] and is equal to pl.ΡΝΜ [according to Proposition II.16], and 
sq.ΑΕ is equal to pl.ΚΖΘ [according to Proposition II.11] and is equal to pl.ΛΘΖ 
[according to Proposition II.16], therefore as sq.ΔΕ is to sq.ΑΕ, so the sum of  
pl.ΡΞΝ and pl.ΡΝΜ is to the sum of pl.ΚΞΘ and pl.ΛΘΖ. And the sum of pl.ΡΞΝ 
and pl.ΡΝΜ is equal to pl.ΡΞΜ, therefore as sq.ΔΕ is to sq.ΑΕ, so pl.ΡΞΜ is to 
the sum of pl.ΚΞΘ and pl.ΚΖΘ. 
 Then it must be shown that the sum pl.ΖΞΛ and pl.ΚΞΘ and pl.ΚΖΘ is 
equal to the double sq.ΑΕ. 
 Let the common sq.ΑΕ, that is pl.ΚΖΘ be subtracted, therefore is 
remains to be shown that the sum of pl.ΖΞΛ and pl.ΚΞΘ is equal to sq.ΑΕ. 
 And this is so four the sum pl.ΖΞΛ and pl.ΚΞΘ is equal to pl.ΛΘΖ, and 
the sum pl.ΖΞΛ and pl.ΚΞΘ is equal to ΚΖΘ [according to Proposition II.16] and 
is equal to sq.ΑΕ [according to Proposition II.11]. 
 Then let ΖΛ and ΜΡ meet on one of the asymptotes at Θ. Then 
pl.ΖΘΛ is equal to sq.ΑΕ, and pl.ΜΘΡ is equal to sq.ΔΕ [according to Proposi-
tions II.11 and II.16], therefore as sq.ΔΕ is to sq.ΑΕ, so pl.ΜΘ,ΕΡ is to pl.ΖΘΛ. 
 And so we want the double pl.ΖΘΛ to be equal the double sq.ΑΕ, and 
it does. 
 And let Ξ be within the angle ΣΕΚ or the angle ΦΕΤ. Then likewise by  
the composition of ratios as sq.ΔΕ is to sq.ΑΕ,  so pl.ΠΞΝ is to pl.ΚΞΘ. And 
 sq.ΔΕ is equal to pl.ΠΜ,ΡΝ,  so is equal to pl.ΡΝΜ, and sq.ΑΛ is equal to pl.ΖΘΛ, 
therefore as pl.ΡΝΜ is to pl.ΖΘΛ, so the subtracted part of pl.ΠΞΝ is to the sub-
tracted part of pl.ΚΞΘ. Therefore also as pl.ΡΝΜ is to pl.ΖΘΛ, so the remainder 
of pl.ΡΞΜ is to the remainder of sq.ΑΕ without pl.ΚΞΘ. 
 Therefore it must shown that pl.ΖΞΛ together sq.ΑΕ without pl.ΚΞΘ 
are equal to the double sq.ΑΕ. 
 Let common sq.ΑΕ, that is pl.ΖΘΛ, be subtracted, therefore it re-
mains to be shown that pl.ΚΞΘ together with sq.ΑΕ without pl.ΚΞΘ are equal to 
sq.ΑΕ. 
 And this is so for pl.ΚΞΘ together with sq.ΑΕ without pl.ΚΞΘ is equal 
to sq.ΑΕ. 
 

[Proposition] 25 
 

 With the same suppositions let the point of meeting of the parallels 
to ΑΓ and ΒΔ be within one of the hyperbolas Δ and Β, as set out  for instance 
at Ξ 26.   
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 I say that the rectangular plane under the segment of the parallels to 
the transverse diameter, that is pl.ΟΞΝ, will be greater than the plane to which 
the plane under the segments of the parallels to the upright diameter, that  
is pl.ΡΞΜ, has the ratio that the square on the upright diameter has to the 
square on the transverse diameter by the double square on the half of the 
transverse diameter. 
 [Proof]. For the same reason as sq.ΔΕ is to sq.ΑΕ, so pl.ΠΞΘ is to  
pl.ΣΞΛ, and sq.ΔΕ is equal to pl.ΠΜΘ, and [according to Proposition II.11] sq.ΑΕ 
is equal to pl.ΛΟΣ, therefore also as sq.ΔΕ is to sq.ΑΕ, so pl.ΠΜΘ is to pl.ΛΟΣ. 
 And since [according to Proposition II.22] the whole pl.ΠΞΘ is to the 
whole pl.ΛΞΣ, so the subtracted part of pl.ΠΜΘ is to the subtracted part of  
pl.ΛΟΣ or pl.ΣΤΛ, therefore also the remainder of pl.ΡΞΜ is to the remainder of 
pl.ΤΞΚ, so sq.ΔΕ is to sq.ΑΕ.  
 Therefore it must be shown that pl.ΟΞΝ is equal to the sum of  
pl.ΤΞΚ and the double sq.ΑΕ. 
 Let the common pl.ΤΞΚ be subtracted, therefore it must be shown 
that pl.ΟΤΝ [according to Proposition III.24] is equal to the double sq.ΑΕ.  
 And it is [according to Proposition  II.23 ] the mentioned equality.  
 

[ Proposition ]  26  
 

 And if the point of meeting of the parallels at Ξ is within one of the 
hyperbolas Α and Γ, as set out before then the rectangular plane under the 
segments of the parallels to the transverse diameter, that is pl.ΛΞΖ , will be less 
than the plane to which the plane under the segments of the other parallel, that 
is pl.ΡΞΗ has the ratio which the square on the upright  diameter has to the 
square on the transverse diameter by the double square on the half of the 
transverse diameter. 
 [Proof]. For, since for the same reasons as before as sq.ΔΕ is to  
sq.ΑΕ, so pl.ΦΞΣ is to pl.ΚΞΘ, therefore also as the whole pl.ΡΞΗ is to the whole 
pl.ΚΞΘ together with sq.ΑΕ, so square on the upright diameter is to square on 
the transverse diameter. Therefore it must be shown that as the sum  of pl.ΛΞΖ 
and the double sq.ΑΕ is equal to the sum  of pl.ΚΞΘ and sq.ΑΕ. 
 Let the common sq.ΑΕ be subtracted, therefore it remains to be 
shown that the sum of pl.ΛΞΖ and sq.ΑΕ is equal to pl.ΚΞΘ or the sum of pl.ΛΞΖ 
and pl.ΛΘΖ is equal to pl.ΚΞΘ [according to Propositions II.11 and II.16]. 
 And it is for the sum of pl.ΛΘΖ and pl.ΛΞΖ is equal to pl.ΚΞΘ. 
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[Proposition] 27 
 

 If the conjugate diameters of an ellipse or the circumference of a cir-
cle are drawn, and one of them is called the upright diameter, and other the 
transverse diameter, and two straight lines meeting each other and the line of 
the section are drawn parallel to them, then the squares on the straight lines 
cut off on the straight line drawn parallel to the transverse diameter between 
the point of meeting of the straight lines and the line of the section increased 
by the figures described on the straight lines cut off on the straight line drawn 
parallel to the upright diameter between the point of meeting of the straight 
lines and the line of the section, figures similar and similarly situated to the ei-
dos corresponding to the upright diameter will be equal to the square on the 
transverse diameter 27. 
 Let there be the ellipse or the circumference of a circle ΑΒΓΔ, whose 
center is Ε, let two of its conjugate diameters be drawn, the upright diameter 
ΑΕΓ and the transverse diameter ΒΕΔ, and let ΝΗΖΘ and ΚΖΛΜ be drawn parallel 
to ΑΓ and ΒΔ. 
 I say that sq.ΝΖ and sq.ΖΘ increased by the figures described on ΚΖ 
and ΖΜ similar and similarly situated to the eidos corresponding to ΑΓ will be 
equal to the sq.ΒΔ. 
 [Proof]. For let ΝΞ be drawn from Ν parallel to ΑΕ, therefore it has 
been dropped as an ordinate to ΒΔ. And let ΒΠ be the latus rectum. Now since 
[according to Proposition I.15] as ΒΠ is to ΑΓ, so ΑΓ is to ΒΔ, therefore as ΒΠ 
is to ΒΔ, so sq.ΑΓ is to sq.ΒΔ. And sq.ΒΔ is equal to the  eidos corresponding to 
ΑΓ, therefore as ΒΠ is to ΒΔ, so sq.ΑΓ is to the eidos corresponding to ΑΓ. And 
as sq.ΑΓ is to the eidos corresponding to ΑΓ, so sq.ΝΞ is to the figure on ΝΞ 
similar to the eidos corresponding to ΑΓ [according to Proposition VI.22 of 
Euclid], therefore also as ΒΠ is to ΒΔ, so sq.ΝΞ is to the figure on ΝΞ similar to 
the eidos corresponding to ΑΓ. And also as ΒΠ is to ΒΔ, so sq.ΝΞ is to pl.ΒΞΔ 
[according to Proposition I.21], therefore  the figure on  ΝΞ or ΖΛ similar to the 
eidos corresponding to ΑΓ is equal to pl.ΒΞΔ. 
 Then likewise we could show that the figure on ΚΛ similar to the ei-
dos corresponding to ΑΓ is equal to pl.ΒΛΔ. 
 And since ΝΘ has been cut equally at Η and unequally at Ζ the sum 
of sq.ΘΖ and sq.ΖΝ is equal to the sum of the double sq.ΘΗ and the double   
sq.ΗΖ is equal to the sum of the double sq.ΝΗ and  the double sq.ΗΖ [according 
to Proposition VI.9 of Euclid]. 
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 Then for the same reasons also the sum of sq.ΜΖ and sq.ΖΚ is equal 
to the double sq.ΚΛ and the double sq.ΛΖ, and the figures on ΜΖ and ΖΚ similar 
to the eidos corresponding to ΑΓ are equal to the double similar figures on ΚΛ 
and ΛΖ. And the sum of the figures on ΚΛ and ΖΛ is equal to the sum of pl.ΒΞΔ 
and pl.ΠΛΔ. And the sum of the figures on ΚΛ and ΖΛ is equal to pl.ΒΞΔ and  
pl.ΒΛΔ, and the sum of sq.ΝΗ and sq.ΗΖ is equal to the sum of sq.ΞΕ and sq.ΖΛ, 
therefore the sum of sq.ΝΖ and sq.ΖΘ and the figures on ΚΖ and ΖΝ similar to 
the eidos corresponding to ΑΓ is equal to the sum of the double pl.ΒΞΔ and the 
double pl.ΒΛΔ , and the double sq.ΞΕ and the double sq.ΕΛ. And since ΒΔ has 
been cut equally at Ε and unequally at Ξ , the sum of pl.ΒΞΔ and sq.ΞΕ is equal 
to sq.ΞΕ [according to Proposition II.5 of Euclid]. 
 Likewise also the sum of pl.ΒΛΔ and sq.ΛΕ is equal to sq.ΒΕ. 
 And so the sum of pl.ΒΞΔ and pl.ΒΛΔ and sq.ΞΕ and sq.ΛΕ is equal to 
the double sq.ΒΕ. 
               Therefore sq.ΝΖ and sq.ΖΘ together with the figures on ΚΖ and on 
ΖΜ similar to the eidos corresponding to ΓΑ are equal to the double of sq.ΒΕ. 
But also sq.ΒΔ is equal to the double of sq.ΒΕ, therefore sq.ΝΖ and sq.ΖΘ  
together the figures on ΚΖ and ΖΜ similar to the eidos corresponding to ΑΓ are 
equal to the sq.ΒΔ. 
 

[Proposition] 28 
 

 If in conjugate opposite hyperbolas conjugate diameters are drawn,  
one of them is  so-called the upright diameter, and other the transverse diame-
ter, and two straight lines are drawn parallel to them and meeting each other 
and the hyperbolas, then the squares on the straight lines cut off on the 
straight line drawn parallel to the upright diameter between the point of meet-
ing of the straight lines and the hyperbolas have to the squares on the straight 
lines cut off on the straight line drawn parallel to the transverse diameter be-
tween the point of meeting of the straight lines and the hyperbolas the ratio 
which the square on the upright diameter has to the square on the transverse 
diameter 28. 
   Let there be the conjugate opposite hyperbolas Α, Β, Γ, and Δ, and 
let ΑΕΓ be the upright diameter and ΒΕΔ the transverse diameter, and let ΖΗΘΚ 
and ΛΗΜΝ be drawn parallel to them and cutting each other and the hyperbolas. 
 I say that as the sum of sq.ΛΗ and sq.ΗΝ is to the sum of sq.ΖΗ and 
sq.ΗΚ, so sq.ΑΓ is to sq.ΒΔ. 
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 [Proof]. For let ΛΞ and ΖΟ be drawn as ordinates from Ζ and Λ, 
therefore they are parallel to ΑΓ and ΒΔ. And from Β let the latera recta  
corresponding to ΒΔ and ΒΠ be drawn, then it is evident that as ΠΒ is to ΒΔ., so 
sq.ΑΓ is to sq.ΒΔ [according to Proposition I.15] , so sq.ΑΕ is to sq.ΕΒ, and as 
sq.ΖΟ is to pl.ΒΟΔ [according to Proposition I.21], so pl.ΓΞΑ is to sq.ΛΞ [ac-
cording to Propositions I.21 and I.60].  
 Therefore as one of the antecedents is to one of consequents, so are 
all of the antecedents to all of the consequents [according to Proposition 
V.12 of Euclid], therefore as sq.ΑΓ is to sq.ΒΔ, so the sum of pl.ΓΞΑ and sq.ΑΕ 
and sq.ΟΖ is to the sum of pl.ΔΟΒ and sq.ΒΕ and sq.ΛΞ or as sq.ΑΓ is to sq.ΒΔ, 
so the sum of pl.ΓΞΑ and sq.ΑΕ, and sq.ΖΘ is to the sum of pl.ΔΟΒ and sq.ΒΕ  
and sq.ΜΕ. 
 But the sum of pl.ΓΞΑ and sq.ΑΕ is equal to sq.ΞΕ, and the sum of 
pl.ΔΟΒ and sq.ΒΕ is equal to sq.ΟΕ [according to Proposition II.6 of Euclid], 
therefore as sq.ΑΓ is to sq.ΒΔ, the sum of sq.ΞΕ and sq.ΕΘ is to the sum of  
sq.ΟΕ and sq.ΕΜ so the sum of sq.ΛΜ and sq.ΜΗ is to the sum sq.ΖΘ and 
sq.ΘΗ. 
 And as has been shown, the sum of sq.ΝΗ and sq.ΗΛ is equal to the 
sum of the double of sq.ΛΜ and the double of sq.ΜΗ, and [according to Propo-
sition II.7 of Euclid]the sum of sq.ΖΗ and sq.ΗΚ is equal to the sum of the dou-
ble sq.ΖΘ and the double sq.ΘΗ, therefore also as sq.ΑΓ is to sq.ΒΔ, so the sum 
of sq.ΝΗ and sq.ΗΛ is to the sum of sq.ΖΗ and sq.ΗΚ. 
 

[Proposition] 29 
 

 With the same suppositions if the parallel to the upright diameter 
cuts the asymptotes, then the squares on the straight lines cut off on the 
straight line drawn parallel to the upright diameter between the point of meet-
ing of the straight lines and the asymptotes together with the half of the square 
on the upright diameter has to the squares on the straight lines cut off on the 
straight line drawn parallel to the transverse diameter between the point of 
meeting of the straight lines and the hyperbolas the ratio which the square on 
the upright diameter has the square on the transverse diameter 29.  
 Let there be the same construction as before, and let ΝΛ cut the as-
ymptotes at Ξ and Ο. It is to be shown that as the sum of sq.ΞΗ and sq.ΗΟ and 
the half of sq.ΑΓ is to the sum of sq.ΖΗ and sq.HK, so sq.ΑΓ is to sq.ΒΔ or 
as the sum of sq.ΞΗ and sq.ΗΟ, and the double sq.ΑΕ is to the sum of sq.ΖΗ 
and sq.ΗΚ, so sq.ΑΓ is to sq.ΒΔ. 
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  [Proof] . For since [according to Proposition II.16] ΛΞ is equal to 
ΟΝ,the sum of sq.ΛΗ and sq.ΗΝ and the double pl.ΝΞΛ is equal to the sum of 
sq.ΞΗ and sq.ΗΟ, therefore the sum of sq.ΞΗ and sq.ΗΟ and the double sq.ΑΕ is 
equal to the sum of sq.ΛΗ and sq.ΗΝ. And as the sum of sq.ΛΗ and sq.ΗΝ is to 
the sum of sq.ΖΗ and sq.ΗΚ, so sq.ΑΓ is to sq.ΒΔ [according to Proposition 
III.28], therefore also as the sum of sq.ΞΗ and sq.ΗΟ and the double sq.ΑΕ is to 
the sum of sq.ΖΗ and sq.ΗΚ, so sq.ΑΓ is to sq.ΒΔ. 
 

[Proposition] 30 
 

 If two straight lines touching a hyperbola meet, and through the 
points of contact a straight line is continued, and through the point of meeting 
a straight line is drawn parallel to one of the asymptotes and cutting both  
the hyperbola and the straight line joining the points of contact, then the 
straight line between the point of meeting and the strait line joining the points 
of contact will be bisected by the hyperbola 30. 
  Let there be the hyperbola ΑΒΓ, and let ΑΔ and ΔΓ be tangents and 
ΕΖ and ΕΗ asymptotes, and let ΑΓ be joined, and through Δ parallel to ΖΕ let 
ΔΚΛ be drawn. 
 I say that ΔΚ is equal to ΚΛ. 
 [Proof].For let ΖΔΒΜ be joined and continued both ways, and let ΖΘ 
be made equal to ΒΖ, and through Β and Κ let ΒΕ and KN be drawn parallel to 
ΑΓ.  Therefore they have been dropped as ordinates. And since the triangle ΒΕΖ 
is similar to the triangle ΔΝΚ, therefore as sq.ΔΝ is to sq.ΝΚ, so sq.ΒΖ is to  
sq.ΒΕ. And as sq.ΒΖ is to sq.ΒΕ, so ΘΒ is to the latus rectum [according to 
Proposition II.1], therefore also as sq.ΔΝ is to sq.ΝΚ, so ΘΒ is to the latus rec-
tum. 
 But as ΘΒ is to the latus rectum, so pl.ΘΝΒ is to sq.ΝΚ [according to 
Proposition I.21], therefore also as sq.ΔΝ is to sq.ΝΚ, so pl.ΘΝΒ is to sq.ΝΚ. 
Therefore pl.ΘΝΒ is equal to sq.ΔΝ. And also [according to Proposition i.37] 
pl.ΜΖΔ is equal to sq.ΖΒ because ΑΔ touches and ΑΜ has been dropped as an 
ordinate, and so also the sum of pl.ΘΝΒ and sq.ΖΒ is equal to the sum of pl.ΜΖΔ 
and sq.ΔΝ. 
 But  the sum of pl.ΘΝΒ and sq.ΖΒ is equal to sq.ΖΝ [according to  
Proposition II.6 of Euclid], and therefore the sum of pl.ΜΖΔ and sq.ΔΝ is equal to 
sq.ZN. Therefore ΔΝ has been bisected at Ν with added ΔΖ [according to Propo-
sition II.6 of Euclid]. And ΚΝ and ΛΜ are parallel, therefore ΔΚ is equal  
to ΚΛ. 
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[Proposition] 31 

 
 If two straight lines touching opposite hyperbolas meet, and a 
straight line is continued through the points of contact, then and through the 
point of meeting a straight line is drawn parallel to the asymptote and cutting 
both the section and the straight line joining the points of contact, then the 
straight line between the point of meeting and the straight line joining the 
points of contact will be bisected by the section 31. 
 Let there be the opposite hyperbolas Α and Β, and tangents ΑΓ and 
ΓΒ, and let ΑΒ be joined and continued, and let ΖΕ be an asymptote and 
through Γ let ΓΗΘ be drawn parallel to ΖΕ. 
 I say that ΓΗ is equal to ΗΘ. 
 [Proof]. For let ΓΕ be joined and continued to Δ, and through Ε and Η 
let ΝΕΚΜ and ΗΞ be drawn parallel to ΑΒ, and through Η and Κ let ΚΖ and ΗΛ 
be drawn parallel to ΓΔ. Since the triangle ΚΖΕ is similar to the triangle ΜΛΗ, as 
sq.ΚΕ is to sq.ΚΖ, so sq.ΜΛ is to sq.ΛΗ. And it has been shown that as sq.ΚΕ is 
to sq.ΚΖ, so pl.ΝΛΚ is to sq.ΛΗ [according to Proposition III.30] . 
 Therefore pl.ΝΛΚ is equal to sq.ΜΛ. Let sq.ΚΕ be added to each 
[side of this equality], therefore the sum of pl.ΝΛΚ and sq.ΚΕ is equal to sq.ΛΕ, 
that is sq.ΗΞ, is equal to the sum of sq.ΜΛ and sq.ΚΕ. And [according to Propo-
sitions V.12 and VI.4 of Euclid] as sq.ΗΞ is to the sum of sq.ΜΛ and sq.ΚΕ, so 
sq.ΞΓ is to the sum of sq.ΛΗ and sq.ΚΖ, therefore sq.ΞΓ is equal to the sum of 
sq.ΛΗ and sq,ΚΖ. And sq.ΛΗ is equal to sq.ΞΕ, and sq.ΚΖ is equal to the square 
on the half of the second diameter [according to Proposition II.1], and is equal 
to pl.ΓΕΔ [according to Proposition I.38], therefore sq.ΞΓ is equal to the sum of 
sq.ΞΕ and pl.ΓΕΔ. 
 Therefore ΓΔ has been cut equally at Ξ and unequally at Ε , and we 
use the Proposition II.5 of Euclid. 
 And ΔΘ is parallel to ΗΞ, therefore ΓΗ is equal to ΗΘ. 32 −33 . 
 

[Proposition] 32 
 

 If two straight lines touching a hyperbola meet, and a straight line is 
continued through the points of contact, and a straight line is drawn through 
the point of meeting of the tangents parallel to the straight line joining the 
points of contact, and a straight line is drawn through the midpoint of the 
straight line joining the points of contact parallel to one of asymptotes, then 
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the straight line cut off between this midpoint and the parallel will be bisected 
by the hyperbola 34. 
 Let there be the hyperbola ΑΒΓ whose center is Δ,and asymptote  
ΔΕ, and let ΑΕ and ΖΓ touch, and let ΓΑ and ΖΔ be joined and continued to Η 
and Θ, then it is evident that ΑΘ is equal to ΘΓ. Then let ΖΚ be drawn through Ζ 
parallel to ΑΓ, and ΘΛΚ through it parallel to ΔΕ. 
 I say that ΚΛ is equal to ΘΛ. 
 [Proof] . For let ΛΜ and ΒΕ be drawn through Β and Λ parallel to ΑΓ, 
then, as has been already shown [in Proposition III.30], as sq.ΔΒ is to sq.ΒΕ, so 
sq.ΘΜ is to sq.ΜΛ, and pl.ΒΜΗ is to sq.ΜΛ, therefore pl.ΗΜΒ is equal to sq.ΜΘ. 
And also pl.ΘΔΖ is equal to sq.ΔΒ because ΑΖ touches, and ΑΘ has been 
dropped as an ordinate [according to Proposition I.37], therefore the sum of  
pl.ΗΜΒ and sq.ΔΒ is equal to the sum of pl.ΘΔΖ and sq.ΜΘ equal to sq.ΔΜ [ac-
cording to Proposition II.6 of Euclid]. 
 Therefore ΖΘ has been bisected at Μ with added ΔΖ.  
 And ΚΖ and ΛΜ are parallel, therefore ΚΛ is equal to ΛΘ. 
 

[Proposition] 33 
 

 If two straight lines touching opposite hyperbolas meet, and one 
straight line is drawn through the points of contact, and another straight line is 
drawn through the point of meeting of the tangents parallel to the straight line 
joining the points of contact, and still another straight line is drawn through the 
midpoint of the straight line joining the points of contact parallel to one of as-
ymptotes and meeting the section, and the parallel drawn through the point of 
meeting, then the straight line between the midpoint and the parallel will be bi-
sected by the section 35. 
 Let there be the opposite hyperbolas ΑΒΓ and ΔΕΖ , and tangents ΑΗ 
and ΔΗ and center Θ, and asymptote ΚΘ, and let ΘΗ be joined and continued, 
and also let ΑΛΔ be joined, then it is evident that it is bisected at Λ [according 
to Proposition II.30]. Then let ΒΘΕ and ΓΗΖ be drawn through Η and Θ parallel 
to ΑΔ, and ΛΜΝ through Λ parallel to ΘΚ. 
 I say that ΛΜ is equal to ΜΝ. 
 [Proof]. For let ΕΚ and ΜΞ be dropped from E and Μ parallel to ΗΘ, 
and ΜΠ  through Μ parallel to ΑΔ. 
 Since then through already shown [in Proposition III.30] that as 
sq.ΘΕ is to ΕΚ, so pl.ΒΞΕ is to sq.ΞΜ, therefore as sq.ΘΕ is to sq.ΕΚ, so the sum 



124 

of pl.ΒΞΕ and sq.ΘΕ is to the sum of sq.ΚΕ and sq.ΞΜ [according to Proposition 
V.12 of Euclid] or as sq.ΘΕ is to sq.ΕΚ, so sq.ΘΞ is to the sum of sq.ΚΕ and  
sq.ΞΜ [according to Proposition II.6 of Euclid].  
 But it has been shown [in Propositions I.38 and II.1] that sq.ΕΚ is 
equal to pl.ΗΘΛ, and sq.ΞΜ is equal to sq.ΘΠ, therefore as sq.ΘΕ is to sq.ΕΚ, so 
sq.ΘΞ for sq.ΜΠ is to the sum of pl.ΗΘΛ and sq.ΘΠ. And [according to Proposi-
tion VI.4 of Euclid} as sq.ΘΕ is to sq.ΕΚ, so sq.ΜΠ is to sq.ΠΛ, therefore as 
sq.ΜΠ is to sq.ΠΛ, so sq.ΜΠ is to the sum of pl.ΗΘΛ and sq.ΘΠ. Therefore 
sq.ΠΛ is equal to the sum of pl.ΗΘΛ and sq.ΘΠ. 
 Therefore, ΛΗ has been cut equally at Π and unequally at Θ [and we 
use Proposition II.5 of Euclid]. ΜΠ and ΗΝ are parallel, therefore ΛΜ is equal to 
ΜΝ. 
 

[Proposition] 34 
 

 If some point is taken on one of asymptotes of a hyperbola, and a  
straight line from it touches the hyperbola, and through the point of contact a 
parallel to the asymptote is drawn, then the straight line drawn from the taken 
point parallel to other asymptote will be bisected by the section 36. 
 Let there be the hyperbola ΑΒ, and asymptotes ΓΔ and ΔΕ, and let a 
point Γ be taken at random on ΓΔ, and through it let ΓΒΕ be drawn touching the 
section, and through Β let ΖΒΗ be drawn parallel to ΓΔ, and through Γ let ΓΑΗ 
be drawn parallel to ΔΕ. 
 I say that ΓΑ is equal to ΑΗ. 
 [Proof]. For let ΑΘ be drawn through Α parallel to ΓΔ, and ΒΚ 
through Β parallel to ΔΕ. Since then [according to Proposition II.3] ΓΒ is equal to 
ΒΕ, therefore also ΓΚ is equal to ΚΔ, and ΔΖ is equal to ΖΕ. 
 And since [according to Proposition II,12] pl.ΚΒΖ is equal to pl.ΓΑΘ,  
and ΒΖ is equal to ΔΚ and is equal to ΓΚ, and ΑΘ is equal to ΔΓ, therefore  
pl.ΔΓΑ is equal to pl.ΗΓΚ. Therefore as ΔΓ is to ΓΚ, so ΗΓ is to ΓΑ, and ΓΔ  is 
equal to the double ΓΚ, therefore also ΗΓ is equal to the double ΓΑ. 
 Therefore ΓΑ is equal to ΑΗ. 
 

[Proposition] 35 
 

 With the same suppositions, if from the taken  point some straight 
line is drawn cutting the section at two points, then as the whole straight line is 
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to the straight line cut off outside, so will the  segments of the straight line cut 
off inside be to each other 37. 
 Let there be the hyperbola ΑΒ and the asymptotes ΓΔ and ΔΕ, and 
ΓΒΕ touching and ΘΒ parallel to ΓΔ, through Γ let some straight line ΓΑΛΖΗ be 
drawn across cutting the section at Α and Ζ. 
 I say that as ΖΓ is to ΓΑ, so ΖΛ is to ΑΛ. 
 [Proof]. For let ΓΝΞ, ΚΑΜ, ΟΠΒΡ and ΖΥ be drawn through Γ,Α, Β, 
and Ζ parallel to ΔΕ, and ΑΠΣ and ΤΕΡΜΞ through Α and Ζ parallel to ΓΔ. 
               Since then [according to Proposition II.8] ΑΓ is equal to ΖΗ, therefore 
also [according to Proposition VI.4 of Euclid] ΚΑ is equal to ΤΗ. 
 But ΚΑ is equal to ΔΣ, therefore also ΤΗ is equal to ΔΣ. And so also 
ΓΚ is equal to ΔΥ. And since ΓΚ is equal to ΔΥ, also ΔΚ is equal to ΓΥ, therefore 
as ΔΚ is to ΓΚ, so ΓΥ is to ΓΚ, and as ΓΥ is to ΓΚ, so ΖΓ is to ΑΓ, and as ΖΓ is to 
ΑΓ, so ΜΚ is to ΚΑ, and [according to Proposition VI.1 of Euclid] as ΜΚ is to 
ΚΑ, so the parallelogram ΜΔ is to the parallelogram ΔΑ, and as ΔΚ is to ΓΚ, so 
the parallelogram ΘΚ is to the parallelogram ΚΝ, therefore also as the parallelo-
gram ΜΔ is to the parallelogram ΔΑ, so the parallelogram ΘΚ is to the parallelo-
gram KN. 
 But the parallelogram ΔΑ is equal to the parallelogram ΔΒ [according 
to Proposition II.12]  and is equal to the parallelogram ΟΝ for [according to 
Proposition II.3] ΓΒ is equal to ΒΕ and ΔΟ is equal to ΟΓ, therefore as the paral-
lelogram ΜΔ is to the parallelogram ΟΝ, so the parallelogram ΘΚ is to the paral-
lelogram ΚΝ. And as  the remainder of the parallelogram ΜΘ is to the remainder 
of the parallelogram ΒΚ, so the whole parallelogram ΜΔ is to the whole paral-
lelogram ΟΝ. And since the parallelogram ΔΑ is equal to the parallelogram ΔΒ, 
let the common parallelogram ΔΠ be subtracted, therefore the parallelogram ΚΠ 
is equal to the parallelogram ΠΘ. 
 Let the common parallelogram ΑΒ be added, therefore the whole 
parallelogram ΒΚ is equal to the whole parallelogram ΑΘ. Therefore as the paral-
lelogram ΜΔ is to the parallelogram ΔΑ, so the parallelogram ΜΘ is to the 
parallelogram ΑΘ. 
 But as the parallelogram ΜΔ  is to the parallelogram ΔΑ , so ΜΚ is to 
ΚΑ, and so ΖΓ is to ΑΓ, and as the parallelogram ΜΘ is to the parallelogram ΑΘ, 
and so ΜΦ is to ΦΑ, and so ΖΛ is to ΛΑ, therefore as ΖΓ is to ΑΓ, so ΖΛ is to 
ΛΑ, therefore also as ΖΓ is to ΑΓ, so ΖΛ is to ΛΑ. 
 

[Proposition] 36 
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 With the same suppositions if the straight line drawn across from the 
point neither cuts the section at two points nor is parallel to the asymptote, it 
will meet the opposite hyperbola, and as the whole straight line is to the 
straight line between the section and the parallel through  the point of contact, 
so will the straight line between the opposite hyperbola and the asymptote be 
to the straight line between the asymptote and the other hyperbola 38. 
 Let there be the opposite hyperbolas Α and Β whose center is Γ and 
asymptotes ΔΕ and ΖΗ, and let some point H be taken on ΓΗ, and from it let 
ΗΒΕ be drawn tangent, and ΗΘ neither parallel to ΓΕ nor cutting the section at 
two points [according to Proposition I.26]. 
 It has been shown that ΗΘ continued meets ΓΔ and therefore also 
the hyperbola Α. Let it meet at Α, and let ΚΒΛ be drawn through Β parallel to 
ΓΗ. 
 I say that as AK  is to ΚΘ, so ΑΗ is to ΗΘ. 
 [Proof}. For let ΘΜ and ΑΝ be drawn from Α and Β parallel to ΓΗ,  
and  ΒΞ, ΗΠ, and ΡΘΣΝ from Β, Η, and Θ parallel to ΔΕ. Since then [according to 
Proposition II.16] ΑΔ is equal to ΗΘ, as ΑΗ is to ΗΘ, so ΔΘ is to ΘΗ. 
               But as ΑΗ is to ΗΘ, so ΝΣ is to ΣΘ, and as ΔΘ is to ΗΘ, so ΓΣ is to ΣΗ. 
 And therefore as ΝΣ is to ΣΘ, so ΓΣ is to ΣΗ. But as ΝΣ is to ΣΘ, so 
the parallelogram ΝΓ is to the parallelogram ΓΘ, and as ΓΣ is to ΣΗ, so the  par-
allelogram ΡΓ is to the parallelogram ΡΗ, therefore also as the parallelogram ΝΓ 
is to the parallelogram ΓΘ, so the parallelogram ΡΓ is to the parallelogram ΡΗ. 
And as one is to one, so are all to all, therefore the parallelogram ΝΓ is to 
the parallelogram ΓΘ, so the whole parallelogram ΝΛ is to the sum of the whole 
parallelogram ΓΘ and the parallelogram ΡΗ. And since ΖΒ is equal to ΒΗ, also ΛΒ 
is equal to ΒΠ, and the parallelogram ΛΞ is equal to the parallelogram ΒΗ. 
 And [according to Proposition II.12] the parallelogram ΛΞ is equal to 
the parallelogram ΓΘ, therefore also the parallelogram ΒΗ is equal to the 
parallelogram ΓΘ. 
 Therefore as the parallelogram ΝΓ is to the parallelogram ΓΘ, so the 
whole parallelogram ΝΛ is to the sum of the whole parallelogram ΒΗ and the 
parallelogram ΡΗ or as the parallelogram ΝΓ is to the parallelogram ΓΘ, so the 
parallelogram ΝΛ is to the parallelogram ΡΞ. 
 But the parallelogram ΡΞ is equal to the parallelogram ΛΘ, since also 
[according to Proposition II.12] the parallelogram ΓΘ is equal to the parallelo-
gram ΒΓ, and the parallelogram ΜΒ is equal to the parallelogram ΞΘ. 
Therefore as the parallelogram ΝΓ is to the parallelogram ΓΘ, so the parallelo-
gram ΝΛ is to the parallelogram ΛΘ. 
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 But as  the parallelogram ΝΓ is to the parallelogram ΓΘ, so ΝΣ is to 
ΣΘ, and so ΑΗ is to ΗΘ, and as the parallelogram ΝΛ is to the parallelogram ΛΘ, 
so ΝΡ is to ΡΘ,and so ΑΚ is to ΚΘ, therefore also as ΑΚ is to ΚΘ,so ΑΗ is to ΗΘ  
 

[Proposition] 37 
 

 If two straight lines touching a section of a cone or the circumfer-
ence of a circle or opposite hyperbolas meet, and a straight line is joined  to the 
points of contact, and from the point of meeting of the tangents some straight 
line is drawn across cutting the line [of the section] at two points, then as the 
whole straight line is to the straight line cut off outside, so will the segments 
continued by the straight line joining the points of contact be to each other 39. 
 Let there be the section of a cone ΑΒ and tangents ΑΓ and ΓΒ and 
let ΑΒ be joined and let ΓΔΕΖ be drawn across. 
 I say that as ΓΖ is to ΓΔ, so ΖΕ is to ΕΔ. 
 [Proof]. For let the diameters  ΓΘ and ΑΚ be drawn through Γ and 
Α,and through Ζ and Δ let ΔΠ, ΖΡ, ΛΕΜ, and ΝΔΟ parallel to ΑΘ and ΛΓ be 
drawn. Since then ΛΕΜ is parallel to ΞΔΟ as ΖΓ is to ΓΔ, so ΛΖ is to ΞΔ, and so 
ΖΜ is to ΔΟ, and so ΛΜ is to ΞΟ, and therefore as sq.ΛΜ is to sq.ΞΟ, so sq.ΖΜ 
is to sq.ΔΟ. 
 But as sq.ΛΜ is to sq.ΞΟ, so the triangle ΛΜΓ is to the triangle ΞΓΟ 
[according to Proposition VI.19 of Euclid], and as sq.ΖΜ is to sq.ΔΟ, so the tri-
angle ΖΡΜ is to the triangle ΔΠΟ, therefore also as the triangle ΛΜΓ is to the 
triangle ΞΓΟ, so the triangle ΖΡΜ is to the triangle ΔΠΟ, and so the remainder of 
the quadrangle ΛΓΡΖ is to the remainder of the quadrangle ΞΓΠΔ. 
 But [according to Propositions III.2 and III.11] the quadrangle ΛΓΡΖ is 
equal to the triangle ΑΛΚ, and the quadrangle ΞΓΠΔ is equal to the triangle 
ΑΝΞ, therefore as sq.ΛΜ is to sq.ΞΟ, so the triangle ΑΛΚ is to the triangle ΑΝΞ. 
 But as sq.ΛΜ is to sq.ΞΟ, so sq.ΖΓ is to sq.ΓΔ, and as the triangle 
ΑΛΚ is to the triangle ΑΝΞ, so sq.ΛΑ is to sq.ΑΞ, and so sq.ΖΕ is to ΕΔ, there-
fore also as sq.ΖΓ is to sq.ΓΔ, so sq.ΖΕ is to sq.ΕΔ.  
 And therefore as ΖΓ is to ΓΔ, so ΖΕ is to ΕΔ. 
 

[Proposition] 38 
 

 With the same suppositions if some  straight line is drawn through 
the point of meeting of the tangents parallel to the straight line joining the 
points of contact and a straight line drawn through the midpoint of the straight 
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line joining the points of contact cuts the section at two points and the straight 
line through the point of meeting parallel to the straight line joining the points 
of contact, then as the whole straight line drawn across is to the straight line 
cut off outside between the section and the parallel, so will the segments con-
tinued by the straight line joined to the points of contact be to each  
other 40. 
 Let there be the section ΑΒ and tangents ΑΓ and ΒΓ and ΑΒ  is the 
straight line joining the points of contact, and ΑΝ and ΓΜ  are diameters, then it 
is evident that AB has been bisected at Ε [according to Propositions II.30 and 
II.39]. Let ΓΟ be drawn from Γ parallel to ΑΒ, and let ΖΕΔΟ be drawn across 
through Ε 
 I say that as ΖΟ is to ΟΔ so ΖΕ is to ΕΔ. 
 [Proof]. For let ΛΖΚΜ and ΔΘΗΞΝ be drawn through Ζ and Δ parallel 
to ΑΒ, and through Ζ and Η let ΖΡ and ΗΠ be drawn parallel to ΛΓ. Then likewise 
as before [in Proposition III.37] it will be shown that as sq.ΛΜ is to sq.ΞΘ, so 
sq.ΛΑ is to sq.ΑΞ. And as sq.ΛΜ is to sq.ΞΘ, so sq.ΛΓ is to sq.ΓΞ, and so sq.ΖΟ 
is to sq.ΟΔ, and as sq.ΛΑ is to sq.ΑΞ, so sq.ΖΕ is to sq.ΕΔ,  therefore as sq.ΖΟ is 
to sq.ΟΔ, so sq.ΖΕ is to sq.ΕΔ, and as ΖΟ is to ΟΔ, so ΖΕ is to ΕΔ. 
 

[Proposition] 39 
 

 If two straight lines touching opposite hyperbolas meet, and a 
straight line is drawn through the points of contact, and a straight line drawn 
from the point of meeting of the tangents cuts both hyperbolas and the 
straight line joining the points of contact, then as the whole straight line drawn 
across is to the straight line cut off outside between the section and the 
straight line joining the points of contact, so will the segments of the straight 
line drawn by the segments and the point of meeting of the tangents be to 
each other 41.  
 Let there be the opposite hyperbolas Α and Β whose center is Γ ,and 
tangents ΑΔ and ΔΒ, and let ΑΒ and  ΓΔ be joined and continued, and through Δ 
let some straight line ΕΔΖΗ be drawn across. 
 I say that as ΕΗ is to ΗΖ, so ΕΔ is to ΔΖ. 
 [Proof]. For let ΑΓ be joined and continued, and through Ε and Ζ let 
ΕΘΣ and ΖΛΜΝΞΟ be drawn parallel to ΑΒ, and parallel to ΑΔ, ΕΠ, and ΖΡ. 
 Since then ΖΞ and ΕΣ are parallel, and ΕΖ, ΞΣ, and ΘΜ have been 
drawn through them, as ΕΘ is to ΘΣ, so ΖΜ is to ΜΞ. And alternately as ΕΘ is to 
ΖΜ, so ΘΣ is to ΜΞ, therefore also as sq.ΕΘ is to sq.ΖΜ, so sq.ΘΣ is to sq.ΜΞ. 
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 But as sq.ΕΘ is to sq.ΖΜ, so the triangle ΕΘΠ is to the triangle ΖΡΜ, 
and as sq.ΘΣ is to sq. ΜΞ, so the triangle ΔΘΣ is to the triangle ΞΜΔ, therefore 
also as the triangle ΕΘΠ is to the triangle ΖΡΜ, so the triangle ΔΘΣ is to the tri-
angle ΞΜΔ. And [according to Proposition III.11] the triangle ΕΘΠ is equal to the 
sum of the triangles ΑΣΚ and ΔΘΣ, and the triangle ΖΡΜ is equal to the sum of 
the triangles ΑΞΝ and ΞΜΔ, therefore as the triangle ΔΘΣ is to the triangle ΞΜΔ, 
so the sum of the triangles ΑΣΚ and ΔΘΣ is to the sum of the triangles ΑΞΝ and 
ΞΜΔ, and the remainder of the triangle ΑΣΚ is to the remainder of the triangle 
ΑΝΞ, so the triangle ΔΘΣ is to the triangle ΞΜΔ. 
      But as the triangle ΑΣΚ is to the triangle ΑΝΞ, so sq.ΚΑ is to sq.ΑΝ, and so 
sq.ΕΗ is to sq.ΖΗ, and as the triangle ΔΘΣ is to the triangle ΞΜΔ, so sq.ΘΔ is to 
sq.ΔΜ, and so sq.ΕΔ is to sq.ΔΖ. Therefore also as ΕΗ is to ΖΗ, so ΕΔ is to ΔΖ. 
 

[Proposition] 40 
 

 With the same suppositions, if a straight line is drawn through the 
point of meeting of the tangents parallel to the straight line joining the points of 
contact, and if a straight line drawn from the midpoint of the straight line join-
ing the points of contact cuts both hyperbolas and the straight line parallel to 
the straight line joining the points of contact, then as the whole straight line 
drawn across is to the straight line cut off outside between the parallel and the   
hyperbola, so will the straight line’s segments drawn by the hyperbolas and the 
straight line joining the points of contact be to each other 42. 
 Let there be the opposite hyperbolas Α and Β whose center is Γ, and 
tangents ΑΔ and ΔΒ, and let ΑΒ and ΓΔΕ be joined, therefore [according to 
Proposition II.39] ΑΕ is equal to ΕΒ. And from Δ let ΖΔΗ be drawn parallel to ΑΒ, 
and from Ε let ΛΕ be drawn at random. 
 I say that as ΘΛ is to ΛΚ, so ΘΕ is to ΕΚ. 
 [Proof]. From Θ and Κ let ΝΜΘΞ and ΚΟΡ be drawn parallel to ΑΒ, 
and ΘΚ and ΚΣ parallel to ΑΔ, and let ΞΑΓΤ be drawn through. 
 Since then ΞΑΥ and ΜΑΠ have been drawn across the parallels ΞΜ 
and ΚΠ, as ΞΑ is to ΑΥ, so ΜΑ is to ΑΠ. 
 But as ΞΑ is to ΑΥ, so ΘΕ is to ΕΚ, and as ΘΕ is to ΕΚ, so ΘΝ is to 
ΚΟ because of the similarity of the triangles ΘΕΝ and ΚΕΟ, therefore as ΘΝ is to 
ΛΟ, so ΜΑ is to ΑΠ, therefore also as sq.ΘΝ is to sq.ΚΟ, so sq.ΜΑ is to sq.ΑΠ. 
 But as sq.ΘΝ is to sq.ΚΟ, so the triangle ΘΒΝ is to the triangle ΚΣΟ, 
and as sq.ΜΑ is to sq.ΑΠ, so the triangle  ΞΜΑ is to the triangle ΑΥΠ, therefore 
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also as the triangle ΘΒΝ is to the triangle ΚΣΟ, so the triangle ΞΜΑ is to the tri-
angle ΑΥΠ. 
 And [according to Proposition III.11] the triangle ΘΝΡ is equal to the 
sum of the triangles  ΞΜΑ and ΜΝΔ, and  the triangle ΚΣΟ is equal to the sum 
of the triangles ΑΥΠ and ΔΟΠ, therefore also as the sum of the triangles is ΞΜΑ 
and ΜΝΔ is to the sum of the triangles ΑΥΠ and ΔΟΠ, so the triangle ΞΜΑ is to 
the triangle ΑΥΠ, therefore also as the remainder of the triangle ΝΜΔ is to the 
remainder of the triangle ΔΟΡ, so the whole is to the whole. 
 But as the triangle ΞΜΑ is to the triangle ΑΥΠ, so sq.ΞΑ is to sq.ΑΥ, 
and as the triangle ΝΜΔ is to the triangle ΔΟΠ, so sq.ΜΝ is to sq.ΠΟ, therefore 
also as sq.ΜΝ is to sq.ΠΟ, so sq.ΞΑ is to sq.ΑΥ. 
 But as sq.ΜΝ is to sq.ΠΟ, so sq.ΝΔ is to sq.ΟΔ, and as sq.ΞΑ is to  
sq.ΑΥ, so sq.ΘΕ is to sq.ΕΚ, and as sq.ΝΔ is to sq.ΔΟ, so sq.ΘΛ is to sq.ΛΚ, 
therefore also as sq.ΘΕ is to sq.ΕΚ, so sq.ΘΛ is to sq.ΛΚ. 
 Therefore as ΘΕ is to ΕΚ, so ΘΛ is to ΛΚ. 
 

[Proposition] 41 
 

 If three straight lines touching a parabola meet each other, they will 
be cut in the same ratio 43. 
 Let there be the parabola  ΑΒΓ, and tangents ΑΔΕ,  ΕΖΓ and ΔΒΖ. 
 I say that as ΓΖ is to ΖΕ, so ΕΔ is to ΔΑ, and so ΖΒ is to ΒΔ. 
 [Proof]. For let ΑΓ be joined and bisected at Η. Then it is evident  
[according to Proposition II.29] that the straight line from Ε  to Η is a diameter 
of the parabola. If then is goes through Β  ΔΖ is parallel to ΑΓ [according to 
Proposition II.5] and will  be bisected by ΕΗ, and therefore  [according to Propo-
sition I.35] ΑΔ is equal to ΔΕ, and ΓΖ is equal to ΖΕ, and what was sought is ap-
parent. 
 Let it  not go through Β, but through Θ, and let ΚΘΛ be drawn 
through Θ parallel to ΑΓ, therefore it will touch the parabola at Θ [according to 
Proposition I.32], and because of already said [in Proposition I.35] ΑΚ is equal 
to ΚΕ, and ΛΓ is equal to ΛΕ. 
 Let ΜΝΒΞ be drawn through Β parallel to ΕΗ, and ΑΟ and ΓΠ through 
Α and Γ parallel to ΔΕ. Since then ΜΒ is parallel to ΕΘ, ΜΒ is a diameter 
[according to Propositions I.40 and I.51], and ΔΖ touches at Β, therefore ΑΟ 
and ΓΠ have been dropped as ordinates [according to Proposition II.5 and Defi-
nition 4]. And since ΜΒ is a diameter, and ΓΜ a tangent, and ΓΠ an coordinate 
[according to Proposition I.35] ΜΒ is equal to ΒΠ, and so also ΜΖ is equal to ΖΓ. 
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And since ΜΖ is equal to ΖΓ, and ΕΛ is equal to ΛΓ, as ΜΓ is to ΓΖ, so ΕΓ is to 
ΓΛ, and corresponding as ΜΓ is to ΕΓ, so ΓΖ is to ΓΛ. 
 But as ΜΓ is to ΕΓ, so ΞΓ is to ΓΗ, therefore also as ΓΖ is to ΓΛ, so 
ΞΓ is to ΓΗ. And as ΓΛ is to ΕΓ, so ΓΗ is to ΓΑ, therefore ex as ΓΑ is to ΞΓ, so 
ΕΓ is to ΓΖ, and convertendo as ΕΓ is to ΖΕ, so ΓΑ is to ΑΞ, and separando as 
ΓΖ is to ΖΕ, so ΞΓ is to ΑΞ. 
 Again since ΜΒ is a diameter and ΑΝ a tangent and ΑΟ an ordinate 
[according to Proposition I,35] ΝΒ is equal to ΒΟ, and ΝΔ is equal to ΔΑ. And 
also ΕΚ is equal to ΚΑ, therefore as ΑΕ is to ΚΑ, so ΝΑ is to ΔΑ, and 
correspondingly as ΑΕ is to ΝΑ, so ΚΑ is to ΔΑ. 
 But as ΑΕ is to ΝΑ , so ΗΑ is to ΑΞ, therefore also as ΚΑ is to ΔΑ, so 
ΗΑ is to ΑΞ. And also an ΑΕ is to ΚΑ, so ΓΑ is to ΗΑ, therefore ex aequa as ΑΕ 
is to ΔΑ, so ΓΑ is to ΑΞ, and separando as ΕΔ is to ΔΑ, so ΞΓ is to ΑΞ. 
 And it was also shown that as ΞΓ is to ΑΞ, so ΓΖ is to ΖΕ, therefore 
as ΓΖ is to ΕΖ, so ΕΔ is to ΔΑ. 
 Again since as ΞΓ is to ΑΞ, so ΓΠ is to ΑΟ, and ΓΠ is equal to the 
double ΒΖ, and ΓΜ is equal to the double ΜΖ, and ΑΟ is equal to the double ΒΔ, 
and ΑΝ is equal to the double ΝΔ, therefore as ΞΓ is to ΑΞ, so ΖΒ is to ΒΔ, and 
so ΓΖ is to ΖΕ, and so ΕΔ is to ΔΑ. 
 

[ Proposition ]  42 
 

 If in a hyperbola or an ellipse or the circumference of a circle or op-
posite hyperbolas straight lines are drawn from the vertices of the diameter 
parallel to an ordinate, and some other straight line at random is drawn tangent, 
it will cut off from them straight lines  under which the rectangular plane equal 
to the quarter of the eidos corresponding to the same diameter 44 .  
 Let there be some of the mentioned sections, whose diameter is ΑΒ, 
and from Α and Β let ΑΓ and ΔΒ be drawn parallel to an ordinate, and let some 
other straight line ΓΕΔ be tangent at Ε. 
 I say that pl.ΑΓ,ΒΔ is equal to the mentioned part of the eidos corre-
sponding to ΑΒ. 
 [Proof]. For let its center be Ζ, and through it let ΖΗ be drawn paral-
lel to ΑΓ and ΒΔ. Since then ΑΓ and ΒΔ are parallel, and ΖΗ is also parallel,  
[to them], therefore [according to Definition 6] it is the diameter conjugate to 
ΑΒ, and so sq.ΖΗ is equal to the quarter of the eidos corresponding to ΑΒ [ac-
cording to Definition 11]. 
 If then ΖΗ goes through Ε in the case of the ellipse and circle 
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[according to Propositions I.32 and I.33 of Euclid] ΑΓ is equal to ΖΗ and is equal 
to ΒΔ and it is immediately evident that pl.ΑΓ,ΒΔ is equal to sq.ΖΗ or the quar-
ter of the eidos corresponding to ΑΒ. 
 Then let it not go through it, and let ΔΓ and ΒΑ continued meet at Κ, 
and let ΕΛ be drawn through Ε parallel to ΑΓ, and ΕΜ parallel to ΑΒ. 
 Since then pl.ΚΖΛ is equal to sq.ΑΖ [according to Proposition I.37], 
as ΚΖ is to ΑΖ, so ΑΖ is to ΖΛ, and [according to Proposition V.18 of Euclid] as 
ΚΑ is to ΑΛ, so ΚΖ is to ΑΖ or ΖΒ, inversely as ΖΒ is to ΚΖ, so ΑΛ is to KA, 
componendo or separando as ΒΚ is to ΚΖ ,so ΛΚ is to ΚΑ. 
 Therefore also as ΔΒ is to ΖΘ, so ΕΛ is to ΓΑ. Therefore pl.ΔΒ,ΓΑ is 
equal to pl.ΖΘ,ΕΛ , which is equal to pl.ΘΖΜ. 
 But [according to Proposition I.38] pl.ΘΖΜ is equal to sq.ΖΗ, which is 
equal  [according to Definition 11] to the quarter of the eidos corresponding to 
ΑΒ, therefore also pl.ΔΒ,ΓΑ is equal to the quarter of the eidos corresponding to 
ΑΒ. 
 

 [Proposition] 43 
 

 If a straight line touches a hyperbola, it will cut off from the asymp-
tote beginning with the center of the section straight lines containing a rectan-
gular plane equal to the plane under the straight lines cut off by the tangent at 
the vertex of the hyperbola at its axis 45. 
 Let there be the hyperbola ΑΒ, and asymptotes ΓΔ and ΔΕ, and the 
axis ΒΔ, and let ΖΒΗ be drawn through Β tangent, and some other tangent ΓΑΘ 
be drawn at random. 
 I say that pl.ΖΔΗ is equal to pl.ΓΔΘ. 
 [Proof]. For let ΑΚ and ΒΛ be drawn from Α and Β parallel to ΔΗ, and 
ΑΜ and ΒΝ parallel to ΓΔ. Since then ΓΑΘ touches[according to PropositionII.3]   
ΓΑ is equal to ΑΘ, and so ΓΘ is equal to the double ΑΘ, and ΓΔ is equal to the 
double ΑΜ, and ΔΘ is equal to the double ΑΚ. 
 Therefore pl.ΓΔΘ is equal to the quadruple pl.ΚΑΜ. 
Then likewise it could be shown that pl.ΖΔΗ is equal to the quadruple pl.ΛΒΝ. 
 But [according to Proposition II.12] pl.ΚΑΜ is equal to pl.ΛΒΝ. 
 Therefore also pl.ΓΔΘ is equal to pl.ΖΔΗ, then likewise it could be 
shown, even if ΔΒ were some other diameter and not the axis. 
 

[Proposition] 44 
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 If two straight lines touching a hyperbola or opposite hyperbolas 
meet the asymptotes, then the straight lines drawn to the section will be paral-
lel to the straight line joining the points of contact 46. 
 Let there be either the hyperbola or the opposite hyperbolas ΑΒ, and 
asymptotes ΓΔ and ΔΕ, and tangents ΓΑΘΖ and ΕΒΘΗ, and let ΑΒ, ΖΗ, and ΓΕ 
be joined. 
 I say that they are parallel. 
 [Proof]. For since [according to Proposition III.43] pl.ΓΔΖ is equal to 
pl.ΗΔΕ, therefore as ΓΔ is to ΔΕ, so ΗΔ is to ΔΖ, therefore ΓΕ is parallel to ΖΗ. 
And therefore as ΘΖ is to ΖΓ, so ΘΗ is to ΗΕ. And as ΖΓ is to ΑΓ, so ΗΕ is to HB. 
For each is the double [according to Proposition II.3], therefore ex as ΘΗ is to 
ΗΒ, so ΘΖ is to ΖΑ. Therefore ΖΗ is parallel to ΑΒ. 
 

[Proposition] 45 
 

 If in a hyperbola or an ellipse or the circumference of a circle or 
opposite hyperbolas straight lines are drawn from the vertex of the axis at right 
angles, and a rectangular plane equal to the quarter of the eidos is applied to 
the axis on each side and increased  in the case of the hyperbola and the oppo-
site hyperbolas, but decreased in the case of the ellipse, and some straight line 
is drawn tangent to the section, and meeting the perpendicular straight lines, 
then the straight lines  drawn from the points of meeting to the points of the 
beginnings  of application make right angles at the mentioned points 47. 
 Let there be one of the  mentioned  sections  whose axis is ΑΒ, and  
ΑΓ and ΒΔ are drawn at right angles, and ΓΕΔ is tangent, and let pl.ΑΖΒ and  
pl.ΑΗΒ equal to the quarter of the eidos be applied on each side [of ΑΒ] as it 
has been said, and let ΓΖ, ΓΗ, ΔΖ, and ΔΗ be joined. 
 I say that the angles ΓΖΔ and ΓΗΔ are right . 
 [Proof]. For since it has been shown that pl.ΑΓ,ΒΔ is equal to the 
quarter of the eidos corresponding to ΑΒ, and since also pl.ΑΖΒ is equal to the 
quarter of the eidos corresponding to ΑΒ, therefore pl.ΑΓ,ΒΔ is equal to pl.ΑΖΒ. 
 Therefore as ΑΓ is to ΑΖ, so ΖΒ is to ΒΔ. And the angles at Α and Β 
are right, therefore [according to Proposition VI.6 of Euclid] the angle ΑΓΖ is 
equal to the angle ΒΖΔ, and the angle ΑΖΓ is equal to the angle ΖΔΒ. And since 
the angle ΓΑΖ is right, therefore the sum of the angles ΑΓΖ and ΑΖΓ is equal to 
one right angle. 
 And it has also been shown  that the angle ΑΓΖ is equal to the angle 
ΔΖΒ, therefore the sum of the angles ΑΖΓ and ΔΖΒ is equal to one right angle. 



134 

Therefore the angle ΔΖΓ is equal to one right angle. 
 Then likewise it could also be shown that the angle ΓΗΔ is equal to 
one right angle 48 . 
 

[Proposition] 46 
 

 With the same suppositions, the joined  straight lines make equal an-
gles with the tangents 49. 
  For with the same suppositions I say that the angle ΑΓΖ is equal to 
the angle ΒΓΗ and the angle ΓΔΖ is equal  to the angle ΒΔΗ. 
 [Proof]. For since it has been shown [in Proposition III.45] that both 
angles ΓΖΔ and ΓΗΔ are right, the circle described about ΓΔ as a diameter will 
pass through Ζ and Η, therefore the angle ΔΓΗ is equal to the angle ΔΖΗ for 
they are on the same arc of the circle. And it was shown that the angle ΔΖΗ is 
equal to the angle ΑΓΖ [according to Proposition III.45], and so the angle ΔΓΗ is 
equal to the angle ΑΓΖ. 
 And likewise also the angle ΓΔΖ is equal to the angle ΒΔΗ 50. 
 

[Proposition] 47 
 

 With the same suppositions the straight line drawn from the point of 
meeting of the joined straight lines to the point of contact will be perpendicular 
to the tangent 51. 
 For let the same as before be supposed and let ΓΗ and ΖΔ meet each 
other at Θ, and let continued ΓΔ and ΒΑ meet at Κ, and let ΕΘ be joined. 
 I say that ΕΘ is perpendicular to ΓΔ. 
 [Proof]. For if not, let ΘΛ be drawn from Θ perpendicular to ΓΔ. Since 
then [according to Proposition III.46] the angle ΓΔΖ is equal to the angle ΒΔΗ, 
and also the right angle ΔΒΗ is equal to the right angle ΔΛΘ, therefore the tri-
angle ΔΗΒ is similar to the triangle ΛΘΔ..Therefore as ΗΔ is to ΒΘ, so ΒΔ is to 
ΔΛ. 
 But as ΗΔ is to ΔΘ, so ΖΓ is to ΓΘ because the angles at Ζ and Η are 
right [according to Proposition III.45] and the angles at Θ are equal, but as ΖΓ is 
to ΓΘ, so ΑΓ is to ΓΛ because of the similarity of the triangles ΑΖΓ and ΛΓΘ 
[according to Proposition III.46], therefore as ΒΔ is to ΔΛ, so ΑΓ is to ΓΛ, and 
alternately as ΒΔ is to ΑΓ, so ΔΛ is to ΓΛ. 
 But as ΒΔ is to ΑΓ, so ΒΚ is to ΚΑ, therefore also as ΔΛ is to ΓΛ, so 
ΒΚ is to ΚΑ . Let ΕΜ be drawn from Ε parallel to ΑΓ, therefore it will have been 
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dropped as an ordinate to ΑΒ [according to Proposition II.7], and as ΒΚ is to 
ΚΑ, so ΒΜ is to ΜΑ [according to Proposition I.36]. And as ΒΜ is to ΜΑ, so ΔΕ 
is to ΕΓ, therefore also as ΔΛ is to ΓΛ, so ΔΕ is to ΕΓ, and this is impossible. 
Therefore ΘΛ is not perpendicular, nor is any over straight line except ΘΕ 52. 
 

[Proposition] 48 
 

 With the same suppositions it must be shown that the straight lines 
drawn from the point of contact to the points produced by the application make 
equal angles with the tangent 53. 
 For let to same suppositions, and let ΕΖ and ΕΗ be joined. 
 I say that the angle ΓΕΖ is equal to the angle ΗΕΔ. 
 [Proof]. For since [according to Propositions III.45 and III.47] the an-
gles ΔΗΘ and ΔΕΘ are right the circle described about ΔΘ as a diameter 
will pass through  Ε and Η [according to Proposition III.31 of Euclid ] , and so 
the angle ΔΘΗ is equal to ΔΕΗ [according to Proposition III.21 of Euclid] for they 
are in the same arc. Likewise  then also the angle ΓΕΖ is equal to the angle ΓΘΖ. 
 But the angle ΓΘΖ is equal to the angle ΔΘΗ for they are vertical an-
gles, therefore also the angle ΓΕΖ is equal to the angle ΔΕΗ 54 .  
 

[Proposition] 49  
 

 With the same  suppositions if from one of the points [of the begin-
nings of application] a perpendicular is drawn to the tangent, then the straight 
lines from that point to the ends of the axis make a right angle 55. 
 For let the same be supposed, and let the perpendicular ΗΘ be drawn 
from Η to ΓΔ, and let ΑΘ and ΒΘ be joined. 
 I say that the angle ΑΘΒ is right. 
 [Proof]. For since the angle ΔΒΗ is right, and the angle ΔΘΗ also 
[is right], the circle described about ΔΗ as a diameter will pass through Θ and Β, 
and the angle ΒΘΗ is equal to angle ΒΔΗ. 
 But it was shown [in Proposition III.45] that the angle ΑΗΓ is equal to 
the angle ΒΔΗ, therefore also the angle ΒΘΗ is equal to the angle ΑΗΓ ,which is 
equal to the angle ΑΘΓ [according to Proposition III.21 of Euclid]. And  so also 
the angle ΓΘΗ is equal to the angle ΑΘΒ. 
 But the angle ΓΘΗ is right, therefore the angle ΑΘΒ also is right 56 . 
 

[Proposition] 50 
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 With the same suppositions if from the center of the section there 
falls to the tangent a straight line parallel to the straight line drawn through the 
point of contact, and one of the points [of the beginning of application] , then  
it will be equal to the half of the axis 57 .  
 Let there be the same as before, and let Θ be the center, and let ΕΖ  
be joined, and let ΔΓ and ΒΑ meet at Κ, and through Θ let ΘΛ be drawn parallel 
to ΕΖ. 
 I say that ΘΛ is equal to ΘΒ. 
 [Proof]. For let ΕΗ, ΑΛ, ΛΒ be joined, and through Η let ΗΜ be drawn 
parallel to ΕΖ. Since then [according to Proposition III.45] pl.ΑΖΒ is equal to  
pl.ΑΗΒ, therefore ΑΖ is equal to ΗΒ. 
 But also ΑΘ is equal to ΘΒ, therefore also ΖΘ is equal to ΘΗ. And so 
also ΕΛ is equal to ΛΜ. 
 And since it was shown [in Proposition III.48] that the angle ΓΕΖ is  
equal to the angle ΔΕΗ, and the angle ΓΕΖ is equal to the angle ΕΜΗ, therefore 
also the angle ΕΜΗ is equal to the angle ΔΕΗ. And therefore ΕΗ is equal to ΗΜ. 
 But it was also shown that ΕΛ is equal to ΛΜ, therefore ΗΛ is per-
pendicular to ΕΜ. And so through what was shown before [in Proposition III.49] 
that the angle ΑΛΒ is right, and the circle described about ΑΒ as a diameter will 
pass through Λ. And ΘΑ is equal to ΘΒ, therefore also, since ΘΛ is a radius of 
the semicircle, ΘΛ is equal to ΘΒ 58-59 . 
 

[Proposition] 51 
 

 If a rectangular plane equal to the quarter of the eidos is applied 
from both sides to the axis of a hyperbola or opposite hyperbolas and in 
creased  and straight lines are deflected from the points of beginning of applica-
tion to either one of the hyperbolas, then the greater of two straight lines in-
creases the less by  exactly as much as the axis 60. 
              Let there be a hyperbola or opposite hyperbolas whose axis is ΑΒ and  
the center Γ, and let each of pl.ΑΔΒ and pl.ΑΕΒ be equal to the quarter of the 
eidos, and from Ε and Δ let ΕΖ and ΖΔ be deflected to the line of the section. 
 I say that ΕΖ is equal to the sum of ΖΔ and ΑΒ. 
 [Proof]. For let ΖΚΘ be drawn tangent through Ζ, and  ΗΓΘ through 
Γ parallel to ΖΔ, therefore the angle ΚΘΗ is equal to the angle ΚΖΔ for they are  
alternate. And [according to Proposition III.48] the angle ΚΖΔ  is equal to the 
angle ΗΖΘ, therefore ΗΖ is equal to ΗΘ. But ΗΖ is equal to ΗΕ, since also ΑΕ is 
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equal to ΒΔ, and ΑΓ is equal to ΓΒ, and therefore ΗΘ is equal to ΕΗ. And so ΖΕ 
is equal to the double ΗΘ. 
 And since it as been shown [in Proposition III.50] that ΓΘ is equal to 
ΓΒ, therefore ΖΕ is equal to the sum of the double ΗΓ and double ΓΒ. 
 But ΖΔ is equal to the double ΗΓ, and ΑΒ is equal to the double ΓΒ, 
therefore ΖΕ is equal to the sum of ΖΔ and ΑΒ. And so ΕΖ is greater than ΖΔ by 
ΑΒ.  
 

 [Proposition] 52 
 

 If in an ellipse the rectangular plane equal to the quarter of the eidos 
is applied from both sides to the major axis and decreased , and from the points  
of beginnings of application straight lines are deflected to the line of the sec-
tion, then they will be equal to the major axis 61. 
 Let there be an ellipse whose major axis is ΑΒ, and let each of  
pl.ΑΓΒ and pl.ΑΔΒ be equal to the quarter of the eidos, and from Γ and Δ let ΓΕ 
and ΕΔ have been deflected to the line of the section. 
 I say that the sum ΓΕ and ΕΔ is equal to ΑΒ. 
 [Proof]. For let ΖΕΘ be drawn tangent, and Η be the center and 
through it let ΗΚΘ be drawn parallel to ΓΕ. Since then [according to Proposition  
III.48] the angle ΓΕΖ is equal to the angle ΘΕΚ ,and the angle ΓΕΖ is equal to the 
angle ΕΘΚ, therefore also the angle ΕΘΚ is equal to the angle ΘΕΚ.  
 Therefore ΘΚ is equal to ΚΕ. And since ΑΗ is equal to ΗΒ, and ΑΓ is 
equal to ΔΒ, therefore also ΓΗ is equal to ΗΔ, and so also ΕΚ is equal to ΚΔ. 
 And for this reason  ΕΔ is equal to the double ΘΚ, and ΕΓ is equal to  
the double ΚΗ.  
But also [according to Proposition III.50], ΑΒ is equal to the sum of ΕΔ and ΕΓ. 
 

                [Proposition] 53 
 

 If in a hyperbola or an ellipse or the circumference of a circle or op-
posite hyperbolas straight lines are drawn from the vertex of a diameter parallel 
to an ordinate, and straight lines drawn from the same ends to the same point 
on the line of the section cut the parallels, then the rectangular plane under the 
straight  lines cut off is equal to the eidos corresponding to the same diameter 
62. 
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 Let there be one of the mentioned sections ΑΒΓ whose diameter is 
ΑΓ, and let ΑΔ and ΓΕ be drawn parallel to an ordinate, and let ΑΒΕ and ΓΒΔ be 
drawn across.  
 I say that pl.ΑΔ,ΕΓ is equal to the eidos corresponding to ΑΓ. 
 [Proof]. For let ΒΖ be drawn from Β parallel to an ordinate. Therefore 
[according to  Proposition I.21 the ratio] pl.ΑΖΓ to sq.ΖΒ is compounded of  
[the ratios] the latus transversum to the latus rectum and sq.ΑΓ to the eidos. 
 But [the ratio] pl.ΑΖΓ to sq.ΕΒ is compounded of [the ratios] ΑΖ to 
ΖΒ and ΖΓ to ΖΒ, therefore [the ratio] the eidos to sq.ΑΓ is compounded of  
[the ratios] ΖΒ to ΑΖ and ΖΒ to ΖΓ, 
 But as ΑΖ is to ΖΒ, so ΑΓ is to ΓΕ, and as ΕΓ is to ΖΒ, so ΑΓ is to ΑΔ, 
therefore [the ratio] the eidos to sq.ΑΓ is compounded of [the ratios] ΓΕ to ΑΓ 
and ΑΔ to ΑΓ. 
 And also as pl.ΑΔ,ΓΕ is compounded of [the ratios] ΓΕ to ΑΓ and ΑΔ 
to ΑΓ, therefore as the eidos is to sq.ΑΓ, so pl.ΑΔ,ΓΕ is to sq.ΑΓ. 
 Therefore pl.ΑΔ,ΓΕ is equal to the eidos corresponding to ΑΓ. 
 

[Proposition] 54 
  
 If two tangents to a section of a cone or to the circumference of a 
circle meet  and through the points of contact parallels to the tangents are 
drawn, and from the points of contact, to the some point of the line of the sec-
tion straight lines are drawn across cutting the parallels, then rectangular plane 
under the straight lines cut off to the square on the straight line joining the 
points of contact has a ratio compounded of the ratio which the inside segment 
joining the point of meeting of the tangents and the midpoint of the straight 
line joining the points of contact is equal in square to the remainder, and of the 
ratio which the plane under the tangents has to the quarter of the square on 
the straight line joining the points of contact 63 . 
 Let there be a section of a cone or the circumference of a circle ΑΒΓ 
and tangents ΑΔ and ΓΔ, and let ΑΓ be joined and bisected at Ε, and let ΔΒΕ be 
joined, and let ΑΖ be drawn from Α parallel to ΓΔ, and ΓΗ from Γ parallel to ΑΔ, 
and let some point Θ on the section be taken, and let ΑΘ and ΓΘ be joined and 
continued to Η and Ζ. 
 I say that [the ratio] pl.ΑΖ,ΓΗ to sq.ΑΓ is compounded of [the ratios] 
sq.ΕΒ to sq.ΒΔ and pl.ΑΔΓ to the quarter of sq.ΑΓ or pl.ΑΕΓ. 
 [Proof]. For let ΚΘΟΞΛ be drawn from Θ parallel to ΑΓ, and from Β 
let ΜΒΝ be drawn parallel to ΑΓ, then it is evident that ΜΝ is tangent [accord-
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ing to Propositions II.5 , II,6 , and II.29]. Since then ΑΕ is equal to ΕΓ, also ΜΒ is 
equal to ΒΝ, and ΚΟ is equal to ΟΛ, and [according to Proposition II.7] ΘΟ is 
equal to ΟΞ, and ΚΘ is equal to ΞΛ. 
 Since then ΜΒ and ΜΑ are tangents and ΚΘΛ has been drawn parallel 
to ΜΒ [according to Proposition III.16] as sq.ΑΜ is to sq.ΜΒ, so sq.ΑΚ is to 
pl.ΞΚΘ or as sq.ΑΜ is to pl.ΜΒΝ, so sq.ΑΚ is to pl.ΛΘΚ. 
 And [according to Propositions V.18 and VI.2 of Euclid] as pl.ΝΓ,ΑΜ 
is to sq.ΑΜ, so pl.ΛΓ,ΑΚ is to sq.ΑΚ, therefore ex as pl.ΝΓ,ΑΜ is to  
pl.ΜΒΝ, so pl.ΛΓ,ΑΚ is to pl.ΛΘΚ. 
 But [the ratio] pl.ΛΓ,ΑΚ to pl.ΛΘΚ is compounded of [the ratios] ΛΓ 
to ΛΘ and ΑΚ to ΘΚ or [the ratio] pl.ΛΓ,ΑΚ to pl.ΛΘΚ is compounded of [the 
ratios] ΖΑ to ΑΓ and ΗΓ to ΓΑ, which is the same as pl.ΗΓ,ΖΑ to sq.ΓΑ. There-
fore as pl.ΝΓ,ΑΜ  is to pl.ΜΒΝ, so pl.ΗΓ,ΖΑ is to sq.ΓΑ. 
 But with pl.ΝΔΜ taken as a mean,[the ratio] pl.ΝΓ,ΑΜ to pl.ΜΒΝ, is 
compounded of [the ratios] pl.ΝΓ,ΑΜ to pl.ΝΔΜ and pl.ΝΔΜ to pl.ΜΒΝ, there-
fore [the ratio] pl.ΗΓ,ΖΑ to sq.ΓΑ is compounded of [the ratios] pl.ΝΓ,ΑΜ to 
pl.ΝΔΜ and pl.ΝΔΜ and pl.ΜΒΝ. 
 But as pl.ΝΓ,ΑΜ is to pl.ΝΔΜ, so sq.ΕΒ is to sq.ΒΔ, and as pl.ΝΔΜ is 
to pl.ΝΒΜ, so pl.ΓΔΑ is to pl.ΓΕΑ, therefore [the ratio] pl.ΗΓ,ΖΑ to sq.ΓΑ, is 
compounded of [the ratios] sq.ΒΕ to sq.ΒΔ and pl.ΓΔΑ to pl.ΓΕΑ. 

 
[Proposition] 55 

 
 If two straight lines touching opposite hyperbolas meet, and through 
the point of meeting a straight line is drawn parallel to the straight line joining 
the point of contact, and from the points of contact parallels to the tangents 
are drawn across, and straight lines are drawn from the points of contact to the 
some point of one of the hyperbolas cutting the parallels, then the rectangular 
plane under the straight lines cut off will have to the square on the straight line 
joining the points of contact the ratio which the plane under the tangents is 
equal to the square of the straight line drawn through the point of meeting par-
allel to the straight line joining the points of contact as far as the section 64. 
 Let there be the opposite hyperbolas ΑΒΓ and ΔΕΖ, and tangents to 
them ΑΗ and ΗΔ, and let ΑΔ be joined, and from Η let ΓΗΕ be drawn parallel to 
ΑΔ, and from Α let ΑΜ be drawn parallel to ΔΗ, and from Δ let ΔΜ be drawn par-
allel to ΑΗ, and let some point Ζ be taken on the hyperbola ΔΖ, and let ΑΝΖ and 
ΖΔΘ be joined. 
 I say that as sq.ΓΗ is to pl.ΑΗΔ, so sq.ΑΔ is to pl.ΘΑ,ΔΝ. 
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 [Proof]. For let ΖΛΚΒ be drawn through Ζ parallel to ΑΔ. Since then it 
has been shown that [according to Proposition III.20] as sq.ΕΗ is to sq.ΗΔ, so  
pl.ΒΛΖ is to sq.ΔΛ, and [according to Proposition II.38] ΓΗ is equal to ΕΗ and ΒΚ 
is equal to ΛΖ, therefore as sq.ΓΗ is to sq.ΗΔ, so pl.ΚΖΛ is to sq.ΔΛ. And also 
[according to Propositions VI.1 and VI.2 of Euclid] as sq.ΗΔ is to pl.ΑΗΔ, so  
sq.ΔΛ is to pl.ΔΛ,ΑΚ ,therefore ex  as sq.ΗΓ is to pl.ΑΗΔ , so pl.ΚΖΛ  
is to pl.ΔΛ,ΑΚ.  
 But [the ratio] pl.ΚΖΛ to pl.ΔΛ,ΑΚ is compounded of [the ratios] ΚΖ 
to ΑΚ and ΖΛ to ΔΛ. But as ΚΖ is to ΑΚ, so ΑΔ is to ΔΝ, and as ΖΛ is to ΔΛ, so 
ΑΔ is to ΘΑ, therefore [the ratio] sq.ΓΗ to pl.ΑΗΔ is compounded of [the ratios] 
ΑΔ to ΔΝ and ΑΔ to ΘΑ. And also [the ratio] sq.ΑΔ to pl.ΘΑ,ΔΝ is compounded 
of [the ratios] ΑΔ to ΔΝ and ΑΔ to ΘΑ, therefore as sq.ΓΗ is to pl.ΑΗΔ, so sq.ΑΔ 
is to pl.ΘΑ,ΔΝ. 
 

[Proposition] 56 
 

 If two straight lines touching one of the opposite hyperbolas meet, 
and parallels to the tangents are drawn through the points of contact, and 
straight lines cutting the parallels are drawn from the point of contact to the 
some point of the other hyperbola, then the rectangular plane under the 
straight lines cut off will have to the square on the straight line joining the 
points of contact the ratio compounded of the ratio of the part of the straight 
line joining the point of meeting and the midpoint between the midpoint and the 
other hyperbola  equal in square to the part between the same hyperbola and 
the point of meeting, and of the ratio of the plane under the tangents to the 
quarter of the square on the straight line joining the points of contact 65. 
 Let there be the opposite hyperbolas ΑΒ and ΓΔ whose center is Ο, 
and tangents ΑΕΖΗ and  ΒΕΘΚ, and let ΑΒ be joined and be bisected at Λ. And 
let ΛΕ be joined and drawn across to Δ, and let ΑΜ be drawn from Α parallel to 
ΒΕ, and ΒΝ from Β parallel to ΑΕ, and let some point Γ be taken on the hyper-
bola ΓΔ, and let ΓΒΜ and ΓΑΝ be joined. 
 I say that [the ratio] pl.ΜΑ,ΒΝ  to sq.ΑΒ is compounded of [the ra-
tios] sq.ΛΔ to sq.ΔΕ and pl.ΑΕΒ to quarter of sq.ΑΒ or pl.ΑΛΒ. 
 [Proof]. For let ΗΓΚ and ΘΔΖ be drawn from Γ and Δ parallel to ΑΒ, 
then it is evident that ΘΔ is equal to ΔΖ, and ΚΞ is equal to ΞΗ, and also ΞΓ is 
equal to ΞΠ, and so also ΓΚ is equal to ΗΠ. 
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 And since ΑΒ and ΔΓ are opposite hyperbolas, and ΒΕΘ and ΘΔ are 
tangents, and ΚΗ is parallel to ΔΘ, therefore as sq.ΒΘ is to sq.ΘΔ, so sq.ΒΚ is to 
pl.ΠΚΓ [according to Proposition III.18]. 
 But sq.ΘΔ is equal to pl.ΘΔΖ, pl.ΠΚΓ is equal to pl.ΚΓΗ, therefore as 
sq.ΒΘ is to pl.ΘΔΖ, so sq.BK is to pl.ΚΓΗ. And also as pl.ΖΑ,ΒΘ is to sq.ΒΘ, so  
pl.ΗΑ,ΒΚ is to sq.ΒΚ, therefore ex  as pl.ΖΑ,ΒΘ is to pl.ΘΔΖ, so pl.ΗΑ,ΒΚ is to 
pl.ΚΓΗ. 
 And with pl.ΘΕΖ taken as a mean, [the ratio] pl.ΖΑ,ΒΘ to pl.ΘΔΖ 
is compounded of [the ratios] pl.ΖΑ,ΘΒ to pl.ΘΕΖ and pl.ΘΕΖ to pl.ΘΔΖ, and as 
pl.ΖΑ,ΘΒ  is to pl.ΘΕΖ, so sq.ΛΔ is to sq.ΔΕ, and as pl.ΘΕΖ is to pl.ΘΔΖ, so pl.ΑΕΒ 
is to pl.ΑΛΒ, therefore [the ratio] pl.ΗΑ,ΒΚ to pl.ΚΓΗ is compounded of [the ra-
tios] sq.ΛΔ to sq.ΔΕ and pl.ΑΖΒ to pl.ΑΛΒ. And [the ratio] pl.ΗΑ,ΒΚ to pl.ΚΓΗ 
is compounded of [the ratios] ΒΚ to ΚΓ and ΗΑ to ΓΗ. 
 But as ΒΚ is to ΚΓ, so ΜΑ is to ΑΒ, and as ΗΑ is to ΓΗ, so ΒΝ is to 
ΑΒ, therefore [the ratio] pl.ΜΑ,ΒΝ to sq.ΑΒ is compounded of [the ratios] ΜΑ 
to ΑΒ and ΒΝ to ΑΒ, that is the same as [the ratios] sq.ΛΔ to sq.ΔΕ and pl.ΑΕΒ 
to pl.ΑΛΒ. 
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BOOK FOUR 
 

Apollonius greets Attalus 1. 
 Earlier, I presented the first three books of my eight books treatise 
on conics to Eudemus of Pergamum, but with his having passed away I decided 
to write out the remaining books for you, because of your earnest desire to 
have them. To start, then, I am sending you the fourth book. This book treats 
of the greatest number of points at which sections of a cone can meet one an-
other or meet a circumference of a circle, assuming that these do not com-
pletely coincide, and, moreover, the greatest number of points at which a sec-
tion of a cone or a circumference of a circle can meet the opposite hyperbolas. 
Besides these questions, there are more that a few others of a similar character 
Conon of Samos presented the first mentioned question to Thrasydaeus without 
giving a correct proof, for which he was rightly attacked by Nicoteles of Cyrene 
2. As for  the second question, Nicoteies, in replying to Conon only mentions 
that it can be proved, but I have found no proof either by him or by anyone 
else. Regarding the third and similar questions, however, I have not found them 
even noticed by anyone. And all these things just spoken of, whose demonstra-
tions I have not found any where, require many and various striking theorems, 
of which most happen to be presented in the first three books of my treatise on 
conics, and the rest in this book. The  investigation of these theorems is also of 
considerable use in the synthesis of problems and limits of possibility . So, 
Nicoteles was not speaking truly when, for the sake of his argument with Conon, 
he said that none of the things discovered by Conon were of any use for limits 
of possibility, but even if the limits of possibility are able to be obtained com-
pletely without these things yet, surely, some matters are more readily per-
ceived by means of them, for example, whether a problem might be done in 
many ways, and in how many ways, or again, whether it might not be done at 
all. Moreover, this preliminary knowledge brings with it a solid starting point for 
investigations, and the theorems are useful for the analysis of limits of possibil-
ity. But apart from such usefulness, these things are also worthy of acceptance 
for the demonstrations themselves: indeed, we accept many things in mathe-
matics for this  and no other reason. 

[Proposition] 1 
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 If a point is taken outside a section of a cone or the circumference of 
a circle, and from this point two  straight lines are drawn towards the section, 
of which one touches the section and other cuts the section at two points, and 
if the  straight line cut off inside the section is divided in that ratio which the 
whole straight line cut off has to the part outside bounded between the point 
and the section, so that homologous  straight lines are at the same point, then 
the straight line drawn from the point of contact to the point of division will 
meet the line of the section, and the straight line drawn from the point of meet-
ing to outside point will touch the section 3. 
 Let there be the  section of a cone or  the circumference of a circle 
ΑΒΓ and let Δ be taken outside the section, from Δ let ΔΒ touch the section at Β 
and let ΔΕΓ  cut the section at Ε and Γ, and let as  ΓΖ is to ΖΕ, so ΓΔ is to ΔΕ. 
 I say that the straight line from Β to Ζ will meet the section, and the 
straight line drawn from the point of meeting to Δ will touch the section. 
 [Proof]. For let ΔΑ be drawn from Δ touching the section, and let ΒΑ 
be joined cutting ΕΓ, if possible, not at Ζ, but at Η. Now since ΒΔ and  ΔΑ, touch 
the section, ΒΑ is drawn from the point of contact, and ΓΔ goes through ΑΒ 
cutting the section at Γ and Ε and meeting ΑΒ at Η, [according to Proposition 
III.37] as ΓΔ is to ΔΕ, so ΓΗ is to ΗΕ. But this is impossible for it was assumed 
that as ΓΔ is to ΔΕ, so ΓΖ is to ΖΕ. Therefore ΒΑ does not cut ΓΕ at a different 
point from Ζ, therefore it cuts ΓΕ at Ζ. 
 

[Proposition] 2 
 

 This is proved for all sections together. However  regarding the hy-
perbola only, if ΔΕ touches the hyperbola  and ΔΓ cuts it at two points Ε  and  
Γ,.and if the point of contact, Β, is between Ε and Γ, and Δ is inside the angle 
between the asymptotes, then the proof is carried out similarly for from Δ it is 
possible to draw another straight line ΔΑ touching the hyperbola and the rest of 
the proof is done similarly 4. 
 

[Proposition] 3 
 

 With the same suppositions if Ε and  Γ do not contain the point of 
contact, Β,  between them, and let Δ be inside the angle  between  the asymp-
totes. Therefore from Δ it is possible to draw another straight line ΔΑ touching 
the section, and rest is proved as before 5. 
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[Proposition] 4 

 
 With the same suppositions if the points of the meeting Ε and  Γ 
contain the point of contact, Β, and Δ is in the angle adjacent to the angle be-
tween the asymptotes, then the straight line from the point of contact to the 
point of division meets the opposite hyperbola, and the straight line drawn from 
the point of meeting to Δ will touch the opposite hyperbola 6. 
 [Proof]. For let Β and Θ be opposite hyperbolas, let ΚΛ and ΜΞΝ be 
asymptotes, and let Δ be in the angle ΛΞΝ. Furthermore let ΔΒ be drawn from Δ 
touching, and ΔΓ cut one of the hyperbolas, let the points of meeting Ε and Γ 
contain the point of contact Β, and let as ΓΖ is to ΖΕ , so ΓΔ is to ΔΕ. It is to be 
shown that the straight line joined from Β to Ζ will meet the hyperbola Θ, and 
that the straight line from the point of meeting to Δ will touch the hyperbola B. 
 Let ΔΘ be drawn from Δ touching the hyperbola, and let the straight 
line ΘΒ all fall, if possible, not at Ζ, but at Η. Therefore [according to 
Proposition III.37] as ΓΔ is to ΔΕ, so ΓΗ is to ΗΕ. But it is impossible for it was 
assumed that as ΓΔ is to ΔΕ, so ΓΖ is to ΖΕ. 
 

[Proposition] 5 
 

 With the same supposition if Δ is on an asymptote, the straight line 
drawn from Β to Ζ will be parallel to the asymptote 7 . 
 [Proof]. For let the same be supposed, let Δ be on one of the asymp-
totes, ΜΝ. It is to be shown that the straight line drawn from Β parallel to ΜΝ 
will fall on Ζ. For if not, let the straight line, if possible, be ΒΗ. But then 
[according to Proposition III.35] as ΓΔ is to ΔΕ, so ΓΗ is to ΗΕ, but it is impossi-
ble. 
 

[Proposition] 6 
 

 If a point is taken outside a hyperbola, and from this point two  
straight lines are drawn to the hyperbola, one of which touches the hyperbola, 
and the other is parallel to one of the asymptotes, and if the segment of the 
latter straight line inside the hyperbola is equal to the segment cut off between 
the hyperbola and the point, then the straight line joined from the point of con-
tact of the former straight line to the taken point will meet the hyperbola, and 
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the straight line drawn from the point of meeting to the point outside will touch 
the hyperbola 8. 
 Let there be the hyperbola ΑΕΒ, let Δ be some point taken outside it,  
and, to start, let Δ be inside the angle between the asymptotes, and from Δ let 
ΒΔ be drawn touching the hyperbola, let ΔΕΖ be parallel to the other of the as-
ymptotes, and let ΕΖ be equal to ΔΕ. 
 I say that the straight line joining from Β and Ζ will meet the hyper-
bola and the straight line from the point of meeting to Δ will touch the hyper-
bola. 
 [Proof]. For let ΔΑ  be drawn touching the hyperbola, and  let ΒΑ be 
joined and cutting ΔΕ, if possible, not at Ζ but at some other point Η. Then 
[according to Proposition III.30] ΔΕ will be equal to ΕΗ. But it is impossible for it 
was assumed that ΔΕ is equal to ΕΖ. 
 

[Proposition] 7 
 

 With the same suppositions Δ be in the angle  adjacent to the angle 
between the asymptotes. 
 I say that the same will come to pass 9. 
 [Proof]. For let ΔΘ be drawn touching the hyperbola and let ΘΒ be 
joined and let, if possible, fall not on Ζ but on Η. Therefore [according to Propo-
sition III.31] ΔΕ is equal to ΕΗ. But it is impossible for it was assumed that 
ΔΕ is equal to ΕΖ. 
 

[Proposition] 8 
 

 With the same suppositions if Δ is on one of the asymptotes and let 
the remaining constructions be the same. 
 I say that the straight line drawn from the point of contact to the 
end of the straight line cut off will be parallel to the asymptote on which Δ is 
situated 10.  
 [Proof]. Let there be the construction just mentioned, and let ΕΖ be 
equal to ΔΕ, and from Β let ΒΗ be drawn, if possible, parallel to ΜΝ. Therefore 
[according to Proposition III.34] ΔΕ is equal to ΕΗ. But it is impossible for it was 
assumed that  ΔΕ is equal to ΕΖ. 
 

[Proposition] 9 
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 If from the some point two straight lines are drawn each cutting a 
section of a cone or the circumference of a circle at two points ,and if the seg-
ments cut off inside are divided in the same ratio as the  wholes are to the 
segments cut off outside, so that the homologous straight lines are at the same 
point, then the straight line drawn through the points of division will meet the 
section at two points, and straight lines drawn from the points of meeting to 
the point outside will touch the section 11. 
 Let there be the section described by us ΑΒ, and from a point Δ 
[outside it] let ΔΕ and ΔΖ be drawn cutting the section at Θ and Ε and at Ζ and  
 Η, respectively. Furthermore let as ΕΛ is to ΛΘ, so ΔΕ is to ΘΔ, and at ΖΚ is to 
ΚΗ, so ΔΖ is to ΔΗ. 
 I say that the straight line joining  Λ to Κ will meet the section at 
both ends, and the straight lines joining  the points of meeting will touch the 
section. 
 [Proof]. For since ΕΔ and ΖΔ both cut the section at two points, it is 
possible to draw a diameter of the section through Δ, and with that also straight 
lines touching the section on either side. Let straight lines ΔΒ and ΔΑ be drawn 
touching section, and let ΒΑ be joined not passing through ΛΚ, if possible, but 
through only one of these two, or through neither. First, let it pass through Λ 
only and let it cut ΖΗ at M. Therefore [according to Proposition III.37] as ΖΔ is 
to ΔΗ, so ΖΜ is to ΜΗ, but this is impossible for it has been assumed that as ΖΔ 
is to ΔΗ, so ΖΚ is to ΚΗ. 
 If ΒΑ passes through neither Λ nor Κ then, the absurdity occurs with 
regards to each straight line ΔΕ and  ΔΖ. 
 

[Proposition] 10 
 

 The reasons above are common for all sections. However regarding 
the hyperbola only, if the other reasons are assumed, and if the points of meet-
ing of the one straight line are between the points of meeting of the other 
straight line, and if Δ is inside the angle between the asymptotes, the same rea-
sons said above will happen as we said above in Theorem 2 [Proposition IV.2] 
12. 
 
 

[Proposition] 11 
 

 With the same suppositions if the points of meeting of one of the 
straight lines do not contain the points of meeting of the other straight line, 
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then Δ is in the angle between the asymptotes and the diagram and the proof 
will be the same as in Theorem 9 [Proposition IV.9] 13. 
 
 

[Proposition] 12 
 

 With the same suppositions if the points of meeting of one of the 
straight lines contain those other straight lines, and if the chosen point is in the 
angle adjacent to the angle between the asymptotes, then the straight line 
drawn through the points of division and continued will meet the opposite hy-
perbola, and the lines drawn from the points of meeting to Δ will touch the op-
posite hyperbolas 14. 
 Let there be the hyperbola ΖΗ, and its asymptotes  ΝΞ and ΟΠ, and 
its center be Π. Furthermore let Δ be in the angle ΞΡΠ, let ΔΕ and ΔΖ be drawn 
cutting the hyperbola each at two points, let Ε and Θ be  between Ζ and Η, and 
let be that ΕΔ is to ΔΘ, so ΕΚ is to ΚΘ, and that as ΖΔ is to ΔΗ, so ΖΛ is to ΛΗ. 
 It is to be shown that the [straight line] through Κ and Λ will meet 
both [the hyperbola] ΕΖ and also the opposite hyperbola, and the lines from the 
points of meeting to Δ will touch the hyperbolas. 
 [Proof]. For let M be the opposite hyperbola, and from Δ let ΔΜ and 
ΔΣ be drawn touching the hyperbola, let ΜΣ be joined, and, if possible, let it not 
pass through Κ and  Λ, but rather through only one of these two points for 
through neither. 
 First let it pass through Κ and cut ΖΗ at Χ. Therefore [according to 
Proposition III.37] as ΖΔ is to ΔΗ, so ΧΖ is to ΧΗ. But this is impossible for it has 
been assumed that as ΖΔ is to ΔΗ, so ΖΛ is to ΛΗ. 
 If ΜΣ passes through neither Κ nor Λ, then the impossibility occurs 
with regards to each straight line ΕΔ and ΔΖ. 
 

[Proposition] 13 
 

 With the same suppositions if Δ is on one of the asymptotes, and the 
remaining constructions are assumed to be the same, then  the straight line 
drawn through the points of division will be parallel to the asymptote on which 
the point is situated and continued will meet the hyperbola. Moreover the 
straight line drawn from the point of meeting to the point situated on the as-
ymptote will touch the section 15.  
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 Let there be a hyperbola and its asymptotes, and let Δ be taken on 
one of the asymptotes. Let straight lines be drawn and divided as we have said 
above, and let a straight line ΔΒ be drawn from Δ touching the hyperbola. 
 I say that the straight line drawn from Β parallel to ΠΟ passes 
through Κ and  Λ. 
 [Proof]. For let if not so, then surely it will pass through one of these 
points for two neither. 
 Let it pass through Κ only, therefore [according to Proposition III.35] 
as ΖΔ is to ΔΗ, so ΖΧ is to ΧΗ. But it is impossible. Therefore the straight line 
drawn through Β parallel to ΠΟ will not pass through Κ only. Therefore it will 
pass through both points [Κ and Λ]. 
 

[Proposition] 14  
 

In the same suppositions if Δ is on one  of the asymptotes, and ΔΕ cuts the hy-
perbola at two points, and ΔΗ parallel to the other asymptote cuts the hyper-
bola at Η only, and if as ΔΕ is to ΔΘ, so ΕΚ is to ΚΘ, and ΗΛ is equal to ΔΗ is 
situated in a straight line with ΔΗ, then the straight line drawn through Κ and  Λ 
will be parallel to the asymptote, and will meet the hyperbola, and the straight 
line drawn from the point of meeting to Δ  will touch the hyperbola for similarity 
to what was said above, ΔΒ  will touch the hyperbola. 
 I say that the straight line drawn from Β parallel to the asymptote 
ΠΟ will pass through Κ and  Λ. 
 [Proof]. Indeed, if it passed through Κ only, ΔΗ will not be equal to 
ΗΛ [according to Proposition III.34], which is impossible. And if it passes 
through Λ only then it will not be that [according to Proposition III.35] as ΕΔ is 
to ΔΘ., so ΕΚ is to ΚΘ, and if it passed neither through Κ nor through Λ, the im-
possibility will occur in both ways .Therefore it will pass through both points. 
 

[Proposition] 15 
 

 If in opposite hyperbolas a point is taken between two hyperbolas, 
and if a straight line from this point touches one of opposite hyperbolas, and 
another straight line cuts each of opposite hyperbolas, and if as the straight line 
between the point and the one hyperbola which the first straight line does not 
touch is to the straight line between the point and the other hyperbola, so the 
greater straight line between the hyperbolas is to its excess over the latter,  set 
in a straight line with it and with the homologous lines being at the same ends, 
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then the straight line drawn from the end of the greater straight line to the 
point of contact will meet the section, and the straight line drawn from the 
point of meeting  to the taken point will touch the section 17. 
 Let there be the opposite hyperbolas Α  and Β and let some point Δ 
be taken between the hyperbolas and in the angle between the asymptotes, and 
from this point let ΔΖ be drawn touching the section and ΑΔΒ be drawn cutting 
the section. Furthermore as ΑΓ is to ΓΒ, so ΑΔ is to ΔΒ. It is to be shown that 
the straight line drawn from Ζ to Γ will meet the section, and the straight line 
drawn from the point of meeting to Δ  will touch the section. 
 [Proof]. For let since Δ is  situated in the angle containing the sec-
tion, it is possible to draw from Δ another straight line touching the section [ac-
cording to Proposition II.49]. Let ΔΕ be drawn, let ΖΕ be drawn and let it pass, if 
possible, not through Γ, but through Η. It will then [according to Proposition 
III.37] that as ΑΔ is to ΔΒ, so ΑΗ will be to ΗΒ, which is impossible for it was as-
sumed that as ΑΔ is to ΔΒ, so ΑΓ is to ΓΒ. 
 

[Proposition] 16 
 

  Ιf Δ is  situated in the angle adjacent to the angle between the as-
ymptotes, and let the remaining construction be the same 18. 
 I say that the straight line joining Ζ to Γ will then continued to meet 
the opposite hyperbola, and the straight line from the point of meeting to Δ will 
touch the opposite hyperbola. 
 [Proof]. For let the same reason be as before, and let Δ be in the an-
gle adjacent to the angle between the asymptotes, and let ΔΕ be drawn from Δ 
touching the hyperbola Α, let ΕΖ be joined and when continued let it not pass 
through Γ, but through Η, if possible. Then it will be that [according to Proposi-
tion III.39] as ΑΗ is to ΗΒ, so ΑΔ will be to ΔΒ, which is impossible for it was as-
sumed that as ΑΔ is to ΔΒ, so ΑΓ is to ΓΒ. 
 

[Proposition] 17 
 

 With the same suppositions let Δ be on an asymptote 19. 
 I say that the straight line drawn from Ζ to Γ will be parallel to the 
asymptote on which Δ is situated. 
 Let there be the same as before, let Δ be on one of asymptotes let a 
straight line be drawn through Ζ parallel to the asymptote, and , if possible, 
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let it not fall on Γ but on Η. It will then be [according to Proposition III.36] as ΑΔ 
is to ΔΒ, so ΑΗ will be to ΗΒ, which possible. Therefore the straight line from Ζ 
parallel to the asymptote will fall on Γ. 
 

[Proposition] 18 
 

 If in opposite hyperbolas a point is taken between the hyperbolas and 
from this point two straight lines are drawn cutting each of  hyperbolas, and if 
as the  straight lines between one of hyperbolas and the point are two those 
between the other hyperbola and  the same point, so are straight lines greater 
than those cut off between the opposite hyperbola  to their excess over the lat-
ter, then the straight line drawn through the ends of the greater  straight lines 
will meet the hyperbolas, and  the straight lines drawn  from the points of meet-
ing to the original taken point will touch the hyperbolas 20. 
 Let there be the opposite hyperbolas Α and Β, and let Δ be between 
the hyperbolas. Let it be assumed first that Δ be in the angle between the as-
ymptotes, and through Δ let ΑΔΒ, ΓΔΘ be drawn. ΑΔ is greater than ΔΒ, and ΓΔ 
is greater than ΔΘ since [according to Proposition II.16] ΒΝ is equal to ΑΜ. 
 Furthermore let as ΑΚ is to ΚΒ, so ΑΔ is to ΔΒ, and  let as ΓΗ is  
to ΗΘ, so ΓΔ is to ΔΘ. 
 I say that the straight line through Κ and  Η meets the hyperbolas, 
and the straight lines from Δ to the points of meeting will touch the section. 
 [Proof]. For since Δ is inside of the angle between the asymptotes, it 
is possible to draw two straight lines touching the section [according to Propo-
sition II.49]. Let ΔΕ and  ΔΖ be drawn, and let ΕΖ be joined. It will, thus, pass 
through Κ and  Η for if it passes through one of these points only the other 
straight line will be cut in the same ratio by another point, which is impossible. If 
it passes through neither point, the same impossibility will occur in both straight 
lines. 
 

[Proposition] 19 
 

 Let Δ be taken then in the angle adjacent to the angle between the 
asymptotes and let straight lines be drawn cutting the section and divided as 
said above21. 
 I say that the straight line drawn through Κ and Η will meet each of 
opposite hyperbolas, and the straight lines from the point of meeting to Δ will 
touch the section 21. 
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 [Proof]. For let ΔΕ and  ΔΖ be drawn from Δ touching each of the hy-
perbolas. Therefore the straight line through Ε and Ζ will pass through Κ and Η 
for if not so, it will surely go through one of two, or through neither, and again 
one will similarly inter from  this an absurdity. 
 

[Proposition] 20 
 

 If the point is taken on an asymptote, and the remaining construc-
tions 
are the same, then the straight line drawn through the ends of the greater 
straight lines will be parallel to the asymptote on which the point is situated, 
and the straight line drawn from the point of meeting of the section and the 
straight line drawn through the ends of the  greater  straight lines will touch the  
section 22.  
 Let there be the opposite hyperbolas Α and Β, and let Δ be on one of 
the asymptotes, and let the remaining construction be the same. 
 I say that the straight line through Κ and Η meets the section, and 
the straight line from the point of meeting to Δ will touch the section. 
 [Proof]. For let ΔΖ be drawn from Δ touching the section, and a 
straight line be drawn from Ζ parallel to the asymptote on which Δ is situated, it 
will then pass through Κ and Η for if not so, it will either pass through one of 
two or neither, and the same impossibilities will occur as before [according to 
Proposition III.36] 
 

[Proposition] 21 
 

 Again let there be the opposite hyperbolas Α and Β, and let Δ be on 
one of the asymptotes, let ΔΒΚ be parallel to one of two asymptotes, meet the 
section at one point B only, but let ΓΔΘ meet both of hyperbolas.  
Furthermore let as ΓΗ be to ΗΘ, so ΓΔ be to ΔΘ, and let ΔΒ be equal to ΒΚ. 
 I say that the straight line through  Κ and Η will meet the section and 
will be parallel to the asymptote on which Δ is situated, and that the straight 
line drawn from the point of meeting to Δ will touch the section 23. 
 [Proof]. For let ΔΖ be drawn touching the section, and let a straight 
line be drawn parallel to the asymptote on which Δ is situated. If will thus pass 
through Κ and Η for if not so, the absurdity said before will occur [according to 
Proposition III.36] 
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[Proposition] 22 
 

 Similarly, let there be the opposite hyperbolas and their asymptotes, 
and let Δ be similarly taken. Let ΓΔΘ be taken cutting the hyperbolas, and ΔΒ be 
taken parallel to one of two asymptotes.  
Moreover as ΓΔ is to ΔΘ, let ΓΗ be to ΗΘ, and let ΒΚ be equal to ΔΒ. 
 I say that the straight line through Κ and  Η will meet each of the 
opposite hyperbolas, and the straight lines from the points of meeting to Δ will 
touch the section 24. 
 [Proof]. For let ΔΕ and ΔΖ be drawn touching the section, let ΕΖ be 
joined, and, if possible, let it not pass through Κ and  Η,  but through one of 
these two points or neither. If, on the one hand, it passes through Η only, ΔΒ 
will not be equal to ΒΚ, but to some other straight line which [according to 
Proposition III.31] is impossible. If, on the other hand, it passed through Κ only, 
it will not be that as ΓΔ is to ΔΘ, so ΓΗ is to ΗΘ, but, some straight line to some 
other straight line [according to Proposition III.36]. If yet it passes through nei-
ther of Κ and Η, then both impossibilities will occur. 
 

[Proposition] 23 
 

 Again let there be the opposite hyperbolas Α and Β, and let Δ be in 
the angle adjacent to the angle between the asymptotes. Let ΒΔ be drawn cut-
ting the hyperbola Β at one point only, and thus parallel to one of two asymp-
totes, and let ΔΑ be drawn similarly to the hyperbola A, and let ΔΒ be equal to 
ΒΗ and ΔΑ to ΑΚ. 
 I say that the straight line through Κ and Η meets the hyperbolas 
and the straight lines drawn from the points of meeting to Δ will touch the hy-
perbolas. 
 [Proof]. For let ΔΕ  and ΔΖ be drawn touching the hyperbolas, let ΕΖ 
be joined, and, if possible, let it not pass through ΚΗ. So, either it will pass 
through one of these two points or through neither of them, and either ΔΑ will 
not be equal to AK, but some other straight line, which is impossible, or ΔΒ will 
not be equal to ΒΗ, or neither will be equal to neither, and again the same im-
possibility will occur in both cases [according to Proposition III.31]. Therefore ΕΖ 
will pass through Κ and Η. 
 

[Proposition] 24 
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 A section of a cone will not meet a section of a cone or  the circum-
ference of a circle in such  way that a part of them will be the same and another 
part will not be common 26. 
` [Proof]. For let, if possible, let the section of a cone ΔΑΒΓ meet  
[other section of a cone or] the circumference of the circle ΕΑΒΓ, let the same 
part  ΑΒΓ of these sections be common and let ΑΔ and ΑΕ not be common. 
Let Θ be taken on this part, let ΘΑ be joined, and through an arbitrary point Ε 
draw ΔΕΓ parallel to ΑΘ. Moreover bisect ΑΘ at Η, and through Η draw the di-
ameter ΒΗΖ. Therefore the straight line through Β parallel to ΑΘ touches each 
of the sections, and also will be parallel to ΔΕΓ. Also in one  section ΔΖ  will be 
equal to ΖΓ, and in other section [according to Propositions I.46 and I.47] ΕΖ 
will be equal to ΖΓ, so that also ΔΖ and ΖΕ are equal, but this is impossible 27. 
 

[Proposition] 25 
 

 A section of a cone does not cut a section of a cone or the circum-
ference of a circle at more than four points 28. 
 [Proof]. For let, if possible, them cut at five points Α, Β, Γ, Δ, Ε, and 
let the points of meeting Α, Β, Γ, Δ, Ε be taken in succession so the no point of 
meeting between them is left out, and let ΑΒ and ΓΔ be joined and continued. 
So, these straight lines will meet out side the section in the cases of the parab-
ola and the hyperbola [according to Propositions II.24 and II.25]. Let them meet 
at Λ, and let as ΑΛ be to ΛΒ, so ΑΟ be to ΟΒ, and as ΔΛ be to ΛΓ, so ΔΠ be to 
ΠΓ. 
 Therefore the straight line from Π to Ο joined and continued will 
meet the section on each side and the straight lines joining the points of meet-
ing and Λ [according to Proposition IV.9] will touch the section. Let the points 
of contact are Θ and   Ρ and let ΘΛ and ΛΡ be joined. Hence they touch the sec-
tion. 
 Therefore since there is no point of meeting between Β and Γ the 
straight line ΕΛ cuts each of the sections. Let it cut them at Μ and Η. Therefore 
in one hyperbola as ΕΝ is to ΝΗ, so ΕΛ is to ΛΗ, and in the other hyperbola as 
ΕΝ is to ΝΜ, so ΕΛ is to ΛΜ. But it is impossible, so that also what was assumed 
at the start is impossible. 
 If ΑΒ and ΔΓ are parallel, the sections will, of course, be  the ellipses 
or the circumference of a circle. Let ΑΒ and  ΓΔ be bisected at Ο and  Π, and let 
ΟΠ be joined and continued on each side. Then it will meet the sections. So let 
it meet them at Θ and  Ρ. Then ΘΡ will be a diameter of the sections, and ΑΒ 
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and  ΓΔ are drawn as ordinates [according to Proposition II.28]. Let ΕΝΜΗ be 
drawn from Ε parallel to ΑΒ and  ΓΔ. Therefore ΕΜΗ cuts ΘΡ each of the sec-
tions because there is no other meeting besides Α, Β, Γ, Δ.  Then in one of the 
sections ΝΜ will be equal to ΕΝ, and in other section ΝΕ will be equal to ΝΗ [ac-
cording to Definition 4], so that ΝΜ is equal to ΝΗ, but this is impossible 29-30 . 
 

[Proposition] 26 
 

 If the  lines [of the sections] mentioned above some touch at one 
point, then they will not meet each other at more than two other points 31. 
 Let two of the above mentioned lines touch at the point Α. 
 I say that they will not meet each other at more than two other 
points. 
 [Proof]. For let, if possible, them meet at Β, Γ, Δ, and let the points 
of meeting be taken in succession with no point of meeting between them  be 
left out. Let ΒΓ be joined and continued, and from Α let ΑΛ be drawn touching 
the section. Thus ΑΛ will touch both sections and meet ΓΒ. Let it meet it at Λ., 
and let it be that as ΓΛ is to ΛΒ, so ΓΠ is to ΠΒ. 
 Let ΑΠ be joined and continued. Thus it will meet the section and the 
straight lines drawn from  the points of meeting to Λ will touch the section 
[according to Proposition IV.1] . Let it meet it at Θ  and Ρ, and let ΘΛ  and ΛΡ 
be joined. These straight lines will touch the section. Therefore the straight line 
joining Δ to Λ will cut each of sections, and the earlier mentioned absurdity will 
occur. The section will not cut one another at more than two points. 
 If in an ellipse or the circumference of a circle ΓΒ is parallel to ΑΛ, 
the proof will be similar to that given above once ΑΘ is shown to be a diameter. 
 

[Proposition] 27 
 

 If the  lines [of the sections] mentioned above some touch one 
another at two points, they will not meet one another at another point 32. 
 Let two of lines mentioned above touch one another at two points 
Α and Β. I say that they will not meet one another at another point. 
 [Proof]. For let, if possible, them meet also at Γ, and to start let Γ be 
outside of the points of contact Α and Β, and let straight lines be drawn from Α 
and  Β touching the sections. Therefore they will touch both lines. Let them 
touch and be continued to Λ, as in the first diagram, and let ΓΛ be drawn. Then 
it cuts each of the sections . Let it cut them at Η and  Μ, and let ΑΝΒ be joined. 
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Therefore in one of the sections as ΓΝ will be to ΝΗ, so ΓΛ will be to ΛΗ, and in 
the other section as ΓΝ will be to ΝΜ, so [according to Proposition III.37] ΓΛ will 
be to ΛΜ, but this is impossible. 
 

[Proposition] 28 
 

 If ΓΗ is parallel to the straight lines touching the sections at Α  and  
Β as in the ellipses in the second diagram 33 , then joining ΑΒ we conclude that 
it is a diameter [according to Proposition II.27], so that each of ΓΗ and ΓΜ are 
bisected at Ν [according to Definition 4], but it is impossible. Therefore the 
lines [of the sections] do not meet one another at another point, but only at Α 
and Β  
 

[Proposition] 29 
 

 Let Γ be between the points of contact, as in the third diagram 34 . 
It is evident that the lines [of the sections] do not touch one another at  Γ 
since it has been assumed that the lines [of the sections] touch at two points 
only. Indeed, let them cut one another [point] at Γ. Let ΑΛ and  ΛΒ be drawn 
from Α  
 and   Β  touching the sections, let ΑΒ be joined and bisected at Ζ. Therefore 
the straight line drawn from Λ to Ζ [according to Proposition II.29] will be a di-
ameter. The diameter will surely not pass through Γ for if it did pass through it 
,then the straight line drawn through Γ parallel to ΑΒ will touch each of the sec-
tions [according to Propositions II.5 and II.6] , and this is impossible. 
 So from Γ let ΓΚΗΜ be drawn parallel to ΑΒ, then in the one section 
ΓΚ will be equal to ΚΗ, and in the other section ΚΜ will be equal to ΚΓ, so that 
ΚΜ is equal to ΚΗ, but this is impossible.  
 Similarly if the straight lines touching the sections are parallel, the 
absurdity will be proved in the same way as above. 
 

[Proposition] 30 
 

 A parabola cannot  touch a parabola at more points than one 35. 
 [Proof]. For let, if possible, the parabolas ΑΗΒ and ΑΜΒ touch at Α 
and Β, and let ΑΛ and ΛΒ be drawn touching the parabolas. They will, thus, 
touch both sections and will meet at Λ. Let ΑΒ be joined and bisected at Ζ, and 
let ΑΖ be drawn. 
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 Now since two lines ΑΗΒ and ΑΜΒ touch one another at Α and Β,  
[according to Propositions IV.27, IV.28, and IV.29] they will not meet each 
other at another point, so that ΛΖ cuts each of sections. Let it cuts them at Η 
and Μ.  In one section [according to Proposition I.35] ΛΗ will be equal to ΗΖ, 
and in the other section ΛΜ will be equal to ΜΖ, but it is impossible. Therefore a 
parabola cannot touch a parabola at more points than one. 
 

[Proposition] 31 
 

 A parabola falling outside  of a hyperbola will not touch the hyperbola 
at two points 36 . 
 [Proof]. For let there be the parabola ΑΗΒ and the hyperbola ΑΜΒ, 
and, if possible, let them touch at Α and Β. Let the straight lines be drawn from 
Α and Β touching each of sections that touch at Α and Β, and let these straight 
lines meet at Λ. Let ΑΒ be joined and bisected at Ζ, and let ΛΖ be joined. 
  Now since the sections ΑΗΒ and ΑΜΒ touch at A and Β, they will 
not meet at another point, therefore ΛΖ cuts the sections at one and then an-
other point. Let it cut them at Η and Μ and let ΛΖ be continued. It will [accord-
ing to Proposition II.29] fall on the center Δ  of the hyperbola. According to the 
properties of the hyperbola as ΖΔ is to ΔΜ, so ΜΔ is to ΔΛ and the remainders  
ΖΜ to ΜΛ [according to Proposition I.37] .Therefore ΖΜ is greater than ΜΛ 
 But according to the properties of the parabola [proved in Proposi-
tion I.35] ΖΗ is equal to ΗΛ, but this is impossible. 
 
                                               [Proposition] 32  
 
 A parabola falling inside  of an ellipse or the circumference of a circle 
will not touch the ellipse or the circumference of the circle at two points 37. 
 [Proof]. For let there be the ellipse or the circumference of a circle 
ΑΗΒ and the parabola ΑΜΒ, and, if possible, let them touch at two points Α and  
Β, and let straight lines be drawn from Α and Β touching the sections and meet-
ing at Λ, let ΑΒ be joined and bisected at Ζ, and let ΛΖ be joined. ΛΖ will cut 
each section at one point and then at another [point],as we said above. Let it 
cut them at Η and Μ, and let ΛΖ be continued to Δ, which is the center of the 
ellipse or of the circle. Therefore according to the properties of the ellipse and 
of the circle as ΛΔ is to ΔΗ, so ΔΗ is to ΔΖ, and [according to Proposition I.37] 
that ratio is equal to the ratio of the remainders ΛΗ to ΗΖ, and ΛΔ is greater 
than ΔΗ. Therefore ΛΗ  is greater than ΗΖ. But according to the properties of 
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the parabola [proved in Proposition I.35] ΛΜ is equal to ΜΖ,  but this is impos-
sible. 

[Proposition] 33 
 

 A hyperbola will not touch a hyperbola with the same center at two 
points 38. 
 [Proof]. For let, if possible, the hyperbolas ΑΗΒ and ΑΜΒ with the 
same center Δ touch at Α and Β. Let ΑΛ and ΛΒ be drawn from Α and Β touch-
ing the hyperbolas and meeting one another, and let ΔΛ be joined and contin-
ued. Moreover let ΑΒ be joined. Therefore ΔΖ bisects ΑΒ at Ζ. Then ΔΖ [accord-
ing to Proposition IV.29] cuts the hyperbolas at Η and Μ . According to the 
properties of the hyperbola  ΑΗΒ pl.ΖΔΛ will be equal to sq.ΔΗ, and according to 
the properties of the hyperbola ΑΜΒ pl.ΖΔΛ  will be equal to sq.ΔΜ [according 
to Proposition I.37]. Therefore sq.ΜΔ is equal to sq.ΔΗ, but this is impossible. 
 

[Proposition] 34 
 

 If an ellipse touches an ellipse or the circumference of a circle  with 
the same center at two points, then the straight line joining the points of con-
tact passes  through falls on the center 39. 

 [Proof] . For let the above mentioned lines touch one another at  
Α and Β. Let ΑΒ be joined, and let straight lines touching the sections be pass 
through Α and Β, and, if possible, meeting at Λ. Let ΑΒ be bisected at Ζ, and let 
ΛΖ  be joined. Therefore [according to Proposition II.29] ΛΖ is a diameter of the 
sections. If possible, let the center be Δ. Therefore pl.ΛΔΖ will be equal to sq.ΔΗ 
according to the properties of one section, but to sq.ΜΔ according to the prop-
erties of other section, so that [according to Proposition I.37] sq.ΗΔ is equal to 
sq.ΔΜ, but this is impossible. Therefore the straight lines from Α and Β touching 
the sections do not meet. Therefore they are parallel, and for the same reason 
ΑΒ is a diameter [according to Proposition II.27], so that it passes through the 
center, what was to prove 40 . 

 
[Proposition] 35 

 
 A section of a cone or the circumference of a circle will not meet a 
section of a cone or the circumference of a circle not having its convexity in the 
same direction at more than two points 41. 
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 [Proof]. For let, if possible, a section of a cone or the circumference 
of a circle ΑΒΓ meet a section of a cone or the circumference of a circle ΑΔΒΕΓ 
not having its convexity in the same direction at more points than two, Α, Β, Γ. 
 Since three points Α, Β, Γ have been taken on the line ΑΒΓ, if ΑΒ  
and  ΒΓ are joined, they will contain an angle having  concavity in the same di-
rection as the line ΑΒΓ. For the same reason ΑΒΓ contain an angle whose con-
cavity is in the same direction as the line ΑΔΒΕΓ. Therefore the lines we have 
been speaking of have both their concave and convex parts in the same direc-
tion, but this is impossible. 
 

[Proposition] 36 
 

 If a section of a cone or the circumference of a circle meets one of  
opposite hyperbolas at two points and the lines between the points of meeting 
have their concavity in the same direction, then the line drawn at the points of 
meeting will not meet the other opposite hyperbola 42. 
 Let there be the opposite hyperbolas Δ and ΑΕΓΖ, and let there be a 
section of a cone or the circumference of a circle ΑΒΖ meeting one of two op-
posite hyperbolas at two points Α and Ζ, and let the sections ΑΒΖ and ΑΓΖ have 
their concavity in the same  direction. 
 I say that continued ABZ will not meet the section Δ. 
              [Proof]. For let ΑΖ be joined. Since Δ and ΑΓΖ are opposite hyperbolas 
and ΑΖ cuts a hyperbola at two points, so continued it will not meet the oppo-
site hyperbola Δ [according to Proposition II.33]. Neither therefore will the line 
ΑΒΖ meet the hyperbola Δ. 

[Proposition] 37 
 

 If a section of a cone or the circumference of a circle meets one of 
the opposite hyperbolas it will not meet the remaining hyperbola at more points 
than two 43 . 
 Let there be the opposite hyperbolas A and Β, and let a section of a 
cone or the circumference of a circle ΑΒΓ meet the hyperbola Α, and let ΑΒΓ 
cut the opposite hyperbola Β at Β and Γ. 
 I say that it will not meet ΒΓ at another point. 
 [Proof]. For let, if possible, it meet ΒΓ at Δ. Therefore ΒΓΔ meets the 
section ΒΓ not having its concavity in the same direction at more points than 
two, but [according to Proposition IV.35] it is impossible. 
This is will be shown similarly if the line ΑΒΓ touches the opposite hyperbola. 
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[Proposition] 38 

 
 A section of a cone or the circumference of a circle will not meet  
opposite hyperbolas at more points than four 44. 
 This is evident from the fact that meeting one of the opposite hy-
perbolas it [according to Proposition IV.37] cannot meet the remaining hyper-
bola at more than two points. 

[Proposition] 39 
 

 If a section of a cone or the circumference of a circle touches one of 
the opposite hyperbolas in the concave part of the latter it will not meet the 
other opposite hyperbola 45. 
 Let there be the opposite hyperbolas Α and Β, and let ΓΑΔ touch the 
hyperbola Α [from the direction of its concavity]. 
 I say that ΓΑΔ will not meet the hyperbola Β. 
 [Proof]. For let ΕΑΖ be drawn from Α touching the hyperbola Α. 
Then it touches each of the sections [Α and ΓΑΔ] at Α, hence [according to 
Proposition II.30] it will not meet [the hyperbola] Β, so that neither will ΓΑΔ 
meet  Β. 
 

[Proposition] 40 
 

 If a section of a cone or the circumference of a circle touches each 
of two opposite hyperbolas at one point, it will not meet the opposite hyperbo-
las at other point 46. 
 Let there be the opposite hyperbolas Α and Β, and let a section of a 
cone or the circumference of a circle touch each of the hyperbolas Α and Β at 
the points A and B. 
 I say that the line ΑΒΓ will not meet the hyperbolas Α and Β at an-
other point. 
 [Proof]. Indeed since the line ΑΒΓ touches the hyperbola  A and 
meets [the hyperbola] Β at one point, therefore it will not touch Α in the direc-
tion of its concavity. Similarly it will be shown that neither will it touch Β in the 
direction of its concavity. Let ΑΔ and ΒΕ be drawn touching the hyperbolas Α 
and Β, then they will touch the line ΑΒΓ. For, if possible, let one of them cut the 
line [of the section] and let it be ΑΖ. Therefore between ΑΖ touching the hy-
perbola Α, and the hyperbola Α, a straight line ΑΗ is situated, but this is impos-
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sible. Therefore it touches ΑΒΓ, and because of this it is evident that ΑΒΓ does 
not meet the opposite hyperbolas at another point. 
 

[Proposition] 41 
 

 If a hyperbola meets one of the opposite hyperbolas at two points 
having its convexity in the opposite direction to the concavity of the touching 
hyperbola, then the opposite hyperbola of the mentioned hyperbola will not 
meet the other opposite hyperbola 47 . 
 Let there be the opposite hyperbolas ΑΒΔ and Ζ, let the hyperbola 
ΑΒΓ meet ΑΒΔ at Α and Β, the former [of them] has its convexity in the oppo-
site direction to the concavity of the latter, and let Ε be the opposite hyperbola 
of ΑΒΓ. 
 I say that Ε will not meet Ζ. 
 [Proof]. For let ΑΒ be joined and continued to Η. Since indeed the 
straight line ΑΒΗ cuts the hyperbola ΑΒΔ and continued it falls outside of each 
section, it [according to Proposition II.33] will not meet the hyperbola Ζ. 
Similarly because ΑΒΗ cuts the hyperbola ΑΒΓ, it will not meet the opposite hy-
perbola Ε, therefore neither will Ε meet Ζ. 
 

[Proposition] 42 
 

 If a hyperbola meets each of two opposite hyperbolas, its opposite 
hyperbola will meet neither of the opposite hyperbolas at two points 48 . 
 Let there be the opposite hyperbolas A and B, and let the hyperbola 
ΑΓΒ meets each of the opposite hyperbolas Α and B. 
 I say that the opposite hyperbola of ΑΓΒ will not meet the hyperbo-
las Α and Β at two points. 
 [Proof]. For let, if possible, it meet one of the opposite hyperbola at 
Δ and Ε, and let ΔΕ be joined and continued. Because of the hyperbola ΔΕ the 
straight line ΔΕ [according to Proposition II.33] will not meet the hyperbola ΑΒ, 
and on the other hand because of the section ΑΕΔ [ the straight line] ΔΕ will not 
meet the hyperbola Β since it passed through the three places [according to 
Proposition II.33], but this is impossible. Similarly it will be shown that ΑΓΒ will 
not meet B at two points. 
 For the same reasons neither will it touch either of the opposite hy-
perbolas for drawing ΘΕ touching it will touch each of the hyperbolas, so that, 
because of the hyperbola ΔΕ it will not meet the hyperbola ΑΓ, whereas because 
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of the hyperbola ΑΕ will it not meet the hyperbola B, so that neither will ΑΓ 
meet B, but this is contrary to what was assumed. 
 
 

[Proposition] 43 
 

 It a hyperbola cuts each of two opposite hyperbola at two points 
having its convexity in the opposite direction to each of them, the opposite hy-
perbola of the mentioned hyperbola will meet neither of the mentioned  oppo-
site hyperbolas 49. 
 Let there be the opposite hyperbolas Α and Β, and let the hyperbola 
ΓΑΒΔ cut each of the hyperbolas Α and Β at two points containing convexities 
in the opposite directions. 
 I say that the opposite hyperbola ΕΖ [of ΓΑΒΔ] meets neither of the 
hyperbolas Α and Β. 
 [Proof]. For let, if possible, it meet the hyperbola Α at Ε, and let ΓΑ 
and ΔΒ be joined and continued, then these straight lines will meet one another 
[according to Proposition II.25]. Let them meet at Θ situated in the angle be-
tween the asymptotes of the hyperbola ΓΑΒΔ [according to PropositionII.25]. 
And ΕΖ is the opposite hyperbola of ΓΑΒΔ. Therefore the straight line joining Ε 
to Θ will fall in the angle ΑΘΒ. Again since ΓΑΕ is a hyperbola and ΓΑΘ and ΘΕ 
meet, and the points of meeting Γ and Α do not contain Ε, the point Θ will be 
between the asymptotes of the hyperbola ΓΑΕ. And ΒΔ is the opposite hyper-
bola of ΓΑΕ. Therefore the straight line from Β to Θ falls inside of the angle 
ΓΘΕ, but this is impossible for it also fall in the angle ΑΘΒ.  
Therefore ΕΖ will not meet one of the opposite hyperbola Α and Β. 
 

[Proposition] 44 
 

 If a hyperbola cuts one of two opposite hyperbolas at four points,  
the opposite hyperbola of the hyperbola will not meet the other of the two op-
posite hyperbolas 50.   
 Let there  be the opposite hyperbolas ΑΒΓΔ and Ε, and let a hyper-
bola cut ΑΒΓΔ at four points Α, Β, Γ, Δ, and let its  opposite hyperbola be Κ. I 
say that Κ will not meet Ε. 
 [Proof]. For let , if possible, it meet it at Κ. Let ΑΒ and  ΓΔ be joined 
and continued, then they will  meet one another. Let them meet at Λ, and let as 
ΑΠ be to ΠΒ, so ΑΛ be to ΛΒ, and let as  ΔΡ be to ΡΓ, so ΔΛ be to ΛΓ. 
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 Therefore the straight line through Π and Ρ will meet  the hyperbolas 
on each side, and the straight lines from L to the points of meeting will touch 
the hyperbolas [according to Proposition IV.9]. Let ΚΛ be joined and continued. 
It will cut the angle ΒΛΓ and the hyperbolas at one and then another point. Let 
it cut them at Ζ and Μ [according to the properties of the opposite hyperbolas 
ΑΒΓΔ and Ε as ΝΚ is to ΚΛ, so ΝΜ is to ΜΛ, but this is impossible. Therefore Ε 
and Κ will not meet one another. 
 

[Proposition] 45  
 

 If a hyperbola meets one of two opposite hyperbolas at two points 
having its concavity in the same direction as the hyperbola, and it  meets the 
other of two opposite hyperbolas at one point, then the opposite hyperbola of 
the mentioned hyperbolas will meet neither of the opposite hyperbolas 51.      
 Let there be the opposite hyperbolas ΑΒ and Γ, and let the hyperbola 
ΑΓΒ meet ΑΒ at the points Α and Β and let it meet the hyperbola Γ at one 
point, and let Δ be the opposite hyperbola of ΑΓΒ. 
 I say that Δ will meet neither of the hyperbola ΑΒ and Γ. 
 [Proof]. For let ΑΓ and ΒΓ be joined and continued. Therefore ΑΓ and 
ΒΓ will not meet the hyperbola Δ [according to Proposition II.33]. Neither will 
they meet the hyperbola Γ at another point besides Γ for if they meet the hy-
perbola Γ at another point they will not meet the opposite hyperbola ΑΒ 
[according to Proposition II.33], where it is assumed that they do meet. 
Therefore the straight lines ΑΓ and ΒΓ meet the hyperbola Γ at one point Γ, and 
they do not meet Δ at all. Therefore Δ will be in the angle ΕΓΖ, so that the hy-
perbola Δ will not meet ΑΒ and Γ. 
 

[Proposition] 46 
 

 If a hyperbola meets one of two opposite hyperbolas at three points, 
the opposite hyperbola of the hyperbola will not meet the other opposite hy-
perbola at more than  one point 52. 
 Let there be the opposite hyperbolas ΑΒΓ and ΔΕΖ, and let the hy-
perbola ΑΜΒΓ meet ΑΒΓ at three points Α, Β,  and let ΔΚ be opposite hyperbola 
of ΑΜΓ. 
 I say that ΔΚ will not meet ΔΕΖ at more point than one. 
 [Proof]. For let, if possible, them meet at Δ and Ε , and let ΑΒ and ΔΕ 
be joined. Now they will either be parallel or not. 
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            To start let them be parallel, and let ΑΒ and ΔΕ be bisected at Η and Θ, 
and let ΗΘ be joined, therefore ΗΘ is a diameter for all these hyperbolas 
[according to Proposition II.36], and ΑΒ and ΔΕ are drawn as ordinates. Let 
ΓΝΞΟ be drawn from Γ parallel to ΑΒ, then it will be drawn as an ordinate to the 
diameter, and it will cut the hyperbolas, one and then other for if it were to cut  
them at the same point, the hyperbolas would  no longer meet at three points, 
but as four. In the hyperbola ΑΜΒ then ΓΝ will be equal to ΝΞ, and in ΑΛΒ  then 
ΓΝ will be equal to ΝΟ. And therefore ΟΝ is equal to ΝΞ, but this is impossible. 
 So let straight lines ΑΒ and ΔΕ not be parallel, but be continued. Let 
them meet at Π. Let ΓΟ be drawn parallel to ΑΠ and let it meet continued ΔΠ at 
Ρ .And let ΑΒ and ΔΕ be bisected at Η and Θ, through Η and Θ let diameters ΗΣΙ 
and ΘΛΜ be drawn, and from Ι, Λ, and Μ let  ΙΥΤ, ΜΥ, and ΛΤ be drawn touch-
ing the hyperbola, then ΙΤ will be parallel to ΔΠ, and ΛΤ and ΜΥ will be parallel to 
ΑΠ and ΟΡ [according to Proposition II.5]. Since as sq.ΜΥ is to sq.ΥΙ, so pl.ΑΠΒ 
is to pl.ΔΠΕ [according to Proposition III.19], but as pl.ΑΠΒ is to pl.ΔΠΕ, so 
sq.ΛΤ is to sq.ΤΙ, and therefore as sq.ΜΥ is to sq.ΥΙ, so sq.ΛΤ is to sq.ΤΙ. 
 For the same reasons as sq.ΜΥ is to sq.ΥΙ, so pl.ΞΡΓ is to pl.ΔΡΕ, as 
sq.ΛΤ is to sq.ΤΙ, so pl.ΟΡΓ is to pl.ΔΡΕ. Therefore pl.ΟΡΓ is equal to pl.ΞΡΓ, but 
this is impossible. 
 

[Proposition] 47 
 

 If a hyperbola touches one of two opposite hyperbolas, and it cuts 
the other at two points, then the opposite hyperbola of the hyperbola will meet 
neither of the opposite hyperbolas. 53 
 Let there be the opposite hyperbolas ΑΒΓ and Δ, and some hyperbola 
ΑΒΔ cut ΑΒΓ at A and B, and touch the hyperbola Δ at the point Δ, and let ΓΕ 
be the opposite hyperbola of ΑΒΔ . 
 I say that ΓΕ meets neither of the opposite hyperbolas ΑΒΓ and Δ. 
 [Proof]. For let, if possible, let ΓΕ meet ΑΒΓ at Γ, and let ΑΒ be 
joined, and  let a straight line be drawn through Δ touching the hyperbola ΑΒΔ 
and meeting ΑΒ at Ζ. 
 Therefore Ζ [according to Proposition II.25] will be inside of the angle 
between the asymptotes of the hyperbola ΑΒΔ. And ΓΕ is the opposite hyper-
bola of ΑΒΔ. Therefore the straight line from Γ to Ζ falls  inside of the angle 
ΒΖΔ. Again since ΑΒΓ is a hyperbola, and ΑΒ and ΓΖ meet, and the points of 
meeting Α and B do not contain Γ, the point Ζ is between the asymptotes of 
the hyperbola ΑΒΓ. And Δ is the opposite hyperbola of ΑΒΓ. Therefore the 
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straight line from ΔΖ falls inside of the angle ΑΖΓ, but it is impossible for it fell in 
the angle ΒΖΔ. Therefore ΓΕ does not meet one of the opposite hyperbolas ΑΒΓ 
and Δ. 
 

[Proposition] 48 
 
 If a hyperbola touches one of two opposite hyperbolas at one point, 
and it meets it at two points, then the opposite hyperbola of the hyperbola will 
not meet the other opposite hyperbola 54. 
 Let there be the opposite hyperbolas ΑΒΓ and Δ, and  let some hy-
perbola ΑΗΓ touch  ΑΒΓ at Α, and let it meet ΑΒΓ at Β and Γ, and let Ε be the 
opposite hyperbola of ΑΗΓ. 
 I say that Ε will not meet Δ . 
 {Proof]. For let, if possible, Ε meet it at Δ, let ΒΓ be joined and con-
tinued to Ζ, and let ΑΖ be drawn from Α touching the hyperbola. As in the 
earlier proof it will be shown that Ζ is  inside of the angle between the asymp-
totes [according to Proposition II.25]. Moreover ΑΖ will touch both hyperbolas, 
and continued ΔΖ will cut the sections at Η and Κ between Α and Β. Let as ΓΛ is 
to ΛΒ, so ΓΖ  is to ΖΒ, and let ΑΛ be joined and continued, it will cut the hyper-
bolas, one and then other [according to Proposition IV.1]. Let it cut them at Ν 
and Μ. Therefore the straight lines from Ζ to Ν and Μ will touch the hyperbolas 
[according to Proposition IV.1] ,and as in the earlier proof [according to the 
Proposition III.37] according to the properties of the one hyperbola as ΞΚ is to 
ΚΖ, so ΞΔ is to ΔΖ, and according to the properties of the other hyperbola as ΞΗ 
is to ΗΖ, so ΞΔ is to ΔΖ, but this is impossible. Therefore it does not meet the 
opposite hyperbola. 
 

[Proposition] 49 
 

 If a hyperbola touching one of two opposite hyperbolas meets the 
same hyperbola at another point, then the opposite hyperbola of the hyperbola 
will not meet the other opposite hyperbola at more points than one 55. 
 Let there be the opposite hyperbolas ΑΒΓ and ΕΖΗ, and let some hy-
perbola ΔΑΓ touch ΑΒΓ at Α, and let it cut ΑΒΓ at Γ, and let ΕΖΘ be the oppo-
site hyperbola of ΔΑΓ. 
               I say that it will not meet the other opposite hyperbola at more points 
than one. 
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 [Proof]. For let, if possible, let it meet it at two points Ε and Ζ, and 
let ΕΖ be joined and through Α let ΑΚ be drawn touching the hyperbolas. Now 
ΕΖ and ΑΚ will be parallel or not parallel. 
 To start let them be parallel, and let the diameter bisecting ΕΖ be 
drawn, therefore it will pass through Α and it will be the diameter of two conju-
gate hyperbolas [according to Proposition II.34]. Let ΓΛΔΒ be drawn through Γ 
parallel to ΑΚ and ΕΖ. Therefore it will cut the hyperbolas at one  and then at 
another point. Then in the one hyperbola ΓΛ will be equal to ΛΔ, and in the re-
maining hyperbola ΓΛ will be equal to LB, but this is impossible. 
 So, let ΑΚ and ΕΖ not be parallel, let them meet at Κ, and let ΓΔ 
drawn parallel to ΑΚ meet ΕΖ at Ν. Let ΑΜ bisecting ΕΖ cut the hyperbolas at Ξ 
and Ο, and let ΞΠ and ΟΡ be drawn from Ξ and Ο touching the hyperbolas. 
Therefore as sq.ΑΠ is to sq.ΠΞ, so sq.ΑΡ is to sq.ΡΟ, and for this reason as  
pl.ΔΝΓ is to pl.ΕΝΖ, and as pl.ΒΝΓ is to pl.ΕΝΖ. Therefore pl.ΔΝΓ is equal to  
pl.ΒΝΓ, but this is impossible. 

[Proposition] 50 
 

 If a hyperbola touches one of two opposite hyperbolas at one point, 
the opposite hyperbola of the hyperbola will not meet other opposite hyperbola 
at more points that two 56 . 
 Let there be the opposite hyperbolas ΑΒ and ΕΔΗ, and let a hyper-
bola ΑΓ touch ΑΒ at Α, then let ΕΔΖ be the opposite hyperbola of ΑΓ. 
 I say that ΕΔΖ will not meet ΕΔΗ at more points than two. 
 [Proof]. For let, if possible, ΕΔΖ meet ΕΔΗ at three points Δ, Ε, and 
Θ, let ΑΚ be drawn touching hyperbolas ΑΒ and ΑΓ, let ΔΕ be joined and contin-
ued, and, start,  let ΑΚ and ΔΕ be parallel. Let ΔΕ be bisected at Λ, and let ΑΛ 
be joined. Then ΑΛ be a diameter for two conjugate hyperbolas [according to 
Proposition II.34] , and will cut the hyperbola between Δ and Ε at Μ and Ζ. Let 
ΘΖΗ be drawn from Θ parallel to ΔΕ. Then in the one section ΘΞ will be equal to 
ΞΖ, and in the other section ΘΞ will be equal  to ΞΗ, so that also ΞΖ is equal to 
ΞΗ, but this is impossible. 
 So let ΑΚ and ΔΕ not be parallel, but let them  meet at Κ, and let the 
remaining constructions be the same. Let ΑΚ be continued and let it meet ΖΘ at 
Ρ . As before we will show that [according to Proposition III.19] in the hyperbola 
ΖΔΕ as pl.ΖΡΘ is to sq.ΡΑ, so pl.ΔΚΕ is to sq.ΑΚ, and in the hyperbola ΗΔΕ as  
pl.ΗΡΘ is to sq.ΡΑ, so pl.ΔΚΕ is to sq.ΑΚ. Therefore pl.ΗΡΘ is equal to  
pl.ΖΡΘ, but this is impossible. Therefore ΕΔΖ does not meet ΕΔΗ at more points 
than two. 
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[Proposition] 51 

 
  If a hyperbola touches two opposite hyperbolas, the opposite hy-
perbola of the hyperbola will meet neither of the opposite hyperbolas 57. 
 Let there be the opposite hyperbolas Α and Β, and let the hyperbola 
ΑΒ touch each of them at the points Α and Β, and let the opposite hyperbola of 
ΑΒ be Ε. I say that E will meet neither of the hyperbolas Α and Β. 
 [Proof]. For let, if possible, it meet Α at Δ, and let straight lines be 
drawn from A and B touching the hyperbolas, they will meet one another hyper-
bola in the angle between the asymptotes of the hyperbola ΑΒ [according to 
Proposition II.25]. Let them meet at Γ, and let ΓΔ be joined. Therefore ΓΔ will be 
in the place between ΑΓ and ΓΒ. But it is between ΒΓ and ΓΖ,  it is impossible. 
Therefore Ε does not meet Α and Β. 
 

[Proposition] 52 
 

 If each of two opposite hyperbolas touch each of two opposite hy-
perbolas at one point, each having its concavity  in the same direction, then 
they will not meet at another point 58. 
 Let the opposite hyperbolas touch one another at Α and  Δ.  
 I say that they will not meet at another point. 
 [Proof]. For let , if possible, them meet at Ε. Since, indeed,  a hyper-
bola touching one of the opposite hyperbolas  meets at Ε, therefore the hyper-
bola ΑΒ will not meet the hyperbola ΑΓ at more points than one [according to 
Proposition IV.49]. Let ΑΘ and ΘΔ be drawn from Α and Δ touching the hyper-
bolas, let ΑΔ be joined, let ΕΒΓ be drawn through Ε parallel to ΑΔ, and let the 
second diameter ΘΚΛ of the opposite hyperbolas be drawn from Θ [according 
to Proposition II.38]. Then it will bisect ΑΔ at Κ. And therefore ΕΒ and ΕΓ will be 
bisected at Λ [according to Proposition II.39]. Therefore ΒΛ is equal to ΛΓ, but 
it is impossible. Therefore the hyperbolas will not meet at another point. 

[Proposition] 53 
 

 If a hyperbola touches one of two opposite hyperbolas at two points, 
the opposite hyperbola of the hyperbola will not meet other opposite hyperbola 
59. 
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 Let there be the opposite hyperbolas ΑΔΒ and Ε, and let the hyper-
bola ΑΓ touch ΑΔΒ at two points Α and Β, and let Ζ be the opposite hyperbola 
of ΑΓ. 
 I say that Ζ will not meet Ε. 
 [Proof]. For let, if possible, it meet it at Ε, and let ΑΗ and ΗΒ be 
drawn from Α and Β touching the hyperbolas, let ΑΒ and ΕΗ be joined, and let 
ΕΗ be continued, it will cut the hyperbolas at one and then at another point, let 
it be as ΕΗΓΔΘ. Since ΑΗ and ΗΒ indeed touch the hyperbola, and ΑΒ joins the 
points of contact in one of the conjugate hyperbolas as ΟΔ is to ΔΗ, so ΘΕ is to 
ΕΗ, and in other hyperbola as ΘΓ is to ΓΗ, so ΘΕ is to ΕΗ, but it is impossible. 
Therefore the hyperbola Ζ  does not meet the hyperbola Ε. 
 

[Proposition] 54 
 

 If a hyperbola touches one of two opposite hyperbolas with the  
convexities in the opposite directions, then the opposite hyperbola of the hy-
perbola will not meet other opposite hyperbola 60. 
 Let there be the opposite hyperbolas Α and Β, and some hyperbola 
ΑΔ touch the hyperbola Α at the point Α, and let the opposite hyperbola of ΑΔ 
be Ζ. I say that Ζ will not meet Β. 
             [Proof]. For let ΑΓ be drawn from Α touching the hyperbolas, therefore 
because of the properties  of the hyperbola ΑΔ [the straight line] ΑΓ will not 
meet Ζ, and because of the properties of the hyperbola A [according to Propo-
sition II.33] it will not meet Β, so that ΑΓ falls between the hyperbolas Β and Ζ. 
Then it is evident that Β will not meet Ζ. 
 

[Proposition] 55 
 

 Opposite hyperbolas will not meet opposite hyperbolas at more 
points than four 61. 
 Let there be one pair of opposite hyperbolas ΑΒ and ΓΔ, and let an-
other pair of opposite hyperbolas be ΑΒΓΔ and ΕΖ, and, to start let ΑΒΓΔ cut 
each of ΑΒ and ΓΔ at four points Α, Β, Γ, and Δ containing convexities in oppo-
site directions, as in the first diagram. Therefore the opposite hyperbola of 
ΑΒΓΔ, that is ΕΖ, will not meet ΑΒ and ΓΔ [according to Proposition IV.43].  
 But let ΑΒΓΔ cut ΑΒ at Α and Β and Γ at one point Γ, as in the sec-
ond diagram. Therefore ΕΖ does not meet the hyperbola Γ [according to Propo-
sition IV.41]. If ΕΖ meets ΑΒ, it will meet it at one point only for if it meets it at 
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two points, its  opposite hyperbola ΑΒΓ will not meet other  opposite hyperbola 
Γ [according to Proposition IV.43]. But it has been assumed that it meets it at 
one point Γ. 
 If, as in the third  diagram, ΑΒΓ cuts ΑΒΕ at two points Α and Β,  and 
ΕΖ meets ΑΒΕ  at one point, ΕΖ will not meet the hyperbola Δ [according to 
Proposition IV.41], where as meeting ΑΒΕ it will not meet ΑΒΕ at more points 
than two. 
 If, as in the fourth  diagram, ΑΒΓΔ cuts each of two opposite hyper-
bolas at one point, ΕΖ will meet neither at two points [according to Proposition 
IV.42]. [So that  according to already said and its converse, ΑΒΓΔ and ΓΖ will 
not meet the opposite hyperbolas ΒΕ and ΕΖ at more points than four] 62.  If 
the hyperbolas have their concavities in the same direction and one cuts other 
at four points Α, Β, Γ, and Δ, has in the fifth diagram, ΕΖ will not meet  other 
opposite hyperbola [according to Proposition IV.44]. Of course, ΕΖ will not meet 
ΑΒ for again ΑΒ will not meet the opposite hyperbolas ΑΒΓΔ and ΕΖ at more 
points than four [according to Proposition IV.38], neither will ΓΔ meet ΕΖ. 
 If, as in the sixth diagram,  ΑΒΓΔ meets other hyperbola at three 
points, ΕΖ will meet other hyperbola at one point only [according to Proposition 
IV.46]. 
 And we  will say the same as before for the remaining cases. 
 So, since what  was proposed is clear in all possible configurations, 
opposite hyperbolas will not meet opposite hyperbolas at more points than four. 
 

[Proposition] 56 
 

 If opposite hyperbolas touch opposite hyperbolas at one point, they 
will not meet at more than two other points 63. 
 Let there be the opposite hyperbolas ΑΒ and ΓΔ and others Δ and 
ΕΖ, let ΒΓΔ touch ΑΒ at Β, let their convexities in opposite directions, and, first, 
let ΒΓΔ meet ΓΔ  at two points Γ and Δ, as in the first diagram. 
 Indeed since ΒΓΔ cuts ΓΔ at two points having their convexities in 
opposite directions, ΕΖ will not meet ΑΒ [according to Proposition IV.41]. Again 
since ΒΓΔ touches ΑΒ at Β, and their convexities are in opposite directions, ΕΖ 
will not meet ΓΔ [according to Proposition IV.54]. Therefore ΕΖ will not meet 
either the hyperbolas ΑΒ and ΓΔ, therefore these hyperbolas will meet at two 
points Γ and Δ only. 
 But let ΒΓ cut ΓΔ at one point Γ, as in the second diagram. Therefore 
ΕΖ will not meet ΓΔ [according to Proposition IV.54], whereas it will meet ΑΒ at 
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one point only for if ΕΖ meets  ΑΒ at two points, ΒΓ will not meet ΓΔ [according 
to Proposition IV.41]. But it was assumed that they meet at one point. 
 If ΒΓ does not meet the hyperbola Δ, as in the third diagram, then 
according to what has been said above, ΕΖ will not meet Δ [according to Propo-
sition IV.54], whereas ΕΖ will not meet ΑΒ at more points than two 
[according to Proposition IV.37]. 
 If the hyperbolas have their concavities in the same direction, the 
same proof will applied. 
So, from that proof, what was proposed is clear in all possible configurations. 
 

[Proposition] 57 
 

 If opposite hyperbolas touch opposite hyperbolas at two points, they 
will not meet at another point 64.  
 Let there be the opposite hyperbolas ΑΒ and ΓΔ, and others ΑΓ and 
ΕΖ, and first, let them touch at Α and Γ, as in the first diagram. 
 Indeed since ΑΓ touches each of the hyperbolas ΑΒ and ΓΔ at Α and 
Γ, therefore ΕΖ will meet neither on the hyperbolas ΑΒ and ΓΔ [according to 
Proposition IV.51].  
 So, let them touch as in the second diagram. It will be proved simi-
larly that ΓΔ will not meet ΕΖ [according to Proposition IV.53]. 
 So, let ΓΑ touch ΑΒ at Α and let Δ touch ΕΖ at Ζ, as in the third 
diagram. Indeed, since ΑΓ touches ΑΒ having their convexities in opposite direc-
tions, ΕΖ will not meet ΑΒ. Again, since ΖΔ touches ΕΖ, ΓΑ will not meet ΔΖ. 
 If ΑΓ touches ΑΒ at Α, and ΕΓ touches ΓΔ at Γ, and their concavities 
are in the same direction, as in the fourth  diagram, they will not meet at an-
other point [according to Proposition IV.52]. ΕΖ will not even meet ΑΒ. 
         So, from the proposed proof it is clear in all possible configurations 65 . 
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BOOK FIVE 

 
Apollonius greets Attalus 

 
 In fifth book I have composed propositions on the maximal and minimal 
straight lines. You should realize that our predecessors and contemporaries paid 
(a little) attention only to the minimal straight lines : they proved thereby which 
straight lines are tangent to the section and also the reverse, that is what prop-
erties are possessed by the tangents to the section1 such that when those 
properties are possessed by straight lines they are tangents. But as for us, we 
have proven those things in Book 1 without making use, in our proof of that, of 
the topic of minimal straight lines, for we wanted to make the place where 
those [things] were put near to our discussion of the derivation of the three 
sections, in order to show in this way that in each of the sections there may oc-
cur an indefinite number 2 of properties and necessities of these things, as is 
the case with the original diameters. As for the propositions in which we speak 
of the  minimal straight  lines, we have separated them out and treated them 
individually, after much investigation, and have attached the discussion of them 
to the discussion of the  maximal  straight  lines which we mentioned above, 
because of our opinion that students of this science need them for the knowl-
edge of analysis and determination of problems and their synthesis, not to 
speak of the fact that they are one of the subjects which deserve investigation 
in their own right. Farewell. 
 

[Proposition] 1 
 

 If there is a hyperbola or an ellipse, and there is  erected at the end of 
one of its diameters the half of the latus rectum to that  diameter at right an-
gles, and a straight line is drawn from its end  to the center of the section, and 
from a place on the section is drawn a straight line as an ordinate to the diame-
ter, then that straight line will be equal in the square to the double quadrangle 
formed on the half of the latus rectum as it is described in the example 3. 
 Let there be the hyperbola or the ellipse ΑΒ whose the diameter ΒΓ and 
the center Δ and the latus rectum for the section ΒΕ, and the half of ΒΕ is ΒΗ. 
Let ΔΗ be joined, and the ordinate ΑΖ be drawn, and from Ζ the straight line ΖΘ 
parallel to BE be drawn. 
 I say that sq.ΑΖ is equal to the double quadrangle ΒΖΘΗ. 
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 [Proof], For let ΕΓ be drawn from E. Then ΔΗ is parallel to ΓΕ,  because ΓΒ 
and ΒΕ are bisected at Δ and Η [respectively]. Let ΖΘ be continued to [meet ΓΕ 
at] Κ. Then ΘΚ is parallel to ΗΕ,and ΘΚ is equal to ΗΕ. 
 But ΗΕ is equal to ΒΗ, therefore ΒΗ is equal to ΘΚ. 
 We make ΖΘ common, then ΖΚ is equal to the sum of ΒΗ and ΖΘ. There-
fore pl.ΒΖΚ is equal to pl.ΒΖ, the sum of ΒΗ and ΖΘ. 
 But pl.ΒΖΚ is equal to sq.ΑΖ, therefore pl.ΒΖ, the sum ΒΗ and ΖΘ is equal 
to sq.ΑΖ,  as is proved in Theorems 12 and 13 of Book I. 
 And pl.ΒΖ, the sum ΒΗ and ΖΘ is equal to the double quadrangle ΒΖΘΗ. 
Therefore sq.ΑΖ is equal to the double quadrangle ΒΖΘΗ 4  .   
 

[Proposition] 2 
 

 But if the straight line drawn as an ordinate falls on Δ which is the center 
in the ellipse, and ΒΕ is made double ΒΖ, and ΔΖ is joined, then sq.ΑΔ is equal to 
the double triangle ΒΖΔ 5. 
 [Proof]. For let ΓΕ be joined, then ΒΖ is equal to ΖΕ. 
 But ΖΕ is equal to ΔΗ, which is parallel to ΒΕ. Therefore pl.ΒΔΗ is equal to 
the double triangle ΔΖΒ. 
 But pl.ΒΔΗ is equal to sq.ΑΔ, as is proved in Theorem 13 of Book I. 
Therefore sq.ΑΔ is equal to the double triangle ΖΒΔ.. 
 

[Proposition] 3 
 

 But if the straight line drawn as an ordinate in the ellipse falls on the other 
side of Δ which is the center as ΑΖ, and ΒΗ is made the half of ΒΕ 
which is the latus rectum, and ΗΔ is joined and continued in a straight line, and 
there is drawn from Ζ a straight line ΖΘ parallel to ΒΕ, to meet ΗΔ , then   sq.ΑΖ 
is equal to the double triangle ΒΔΗ without the double triangle ΔΖΘ 6. 
 [Proof]. For let from Γ be drawn a straight line  ΓΚ parallel to ΒΕ,  and ΗΔ 
be continued until meets ΓΚ at Κ, and the section ΑΒ be completed, and ΑΖ be 
continued in a straight line to [meet it at] L. Then sq.ΖΑ is equal to the double 
quadrangle ΓΚΘΖ, as is proved in Theorem I of this Book. 
 But ΖΛ is equal to ΑΖ, so sq.ΑΖ is equal to the double quadrangle ΓΚΘΖ. 
And the quadrangle ΓΚΘΖ is equal to the triangle ΓΚΔ without the triangle ΔΖΘ. 
But the triangle ΓΚΔ is equal to the triangle ΔΒΗ because ΒΔ is equal to ΔΓ. 
Therefore sq.ΑΖ is equal to the double triangle ΔΒΗ without the double triangle 
ΔΖΘ. 
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[Proposition] 4 
 

 If a point is taken on the axis of a parabola, the distance of which from 
the vertex of the section is equal to the half of the latus rectum, and the 
straight lines are drawn from that point  to the section, then the minimal of 
these [straight lines] if the straight line drawn to the vertex of the section, and 
those closer to this [straight line] will be smaller than those farther [from it], 
and their squares will greater than the square on it by the equal to the square 
on the segment cut off on the axis towards the vertex by the perpendiculars 
[drawn] to the axis from the end of each of them 7 . 
 Let the axis of the parabola be ΓΕ and let ΓΖ be equal to the half of the 
latus rectum, and let from Ζ to the section ΑΒΓ be drawn ΖΗ, ΖΘ, ΖΒ, and ΖΑ. 
 I say that the least of the straight lines drawn from Z to the section ΑΒΓ 
is ΓΖ, and that those [straight lines] which are nearer to it are smaller than 
those which are farther [from it], and that the square on the segment be-
tween Γ and the foot of the perpendicular from it [the end of the straight line]. 
 {Proof]. For let the perpendiculars ΗΚ, ΘΛ and ΑΕ be drawn. Let the half 
of the latus rectum be ΓΜ, then ΓΖ is equal to ΓΜ. 
 And the double pl.ΜΓΚ is equal to sq.ΚΗ, as is proved in Theorem 11 of 
Book I. But the double pl.ΜΓΚ is equal to the double pl.ΖΓΚ. Therefore  the sum 
of the double pl.ΖΓΚ and sq.ΚΖ is equal to the sum of sq.ΚΖ and sq.ΚΗ. 
But these two squares are equal to sq.ΖΗ. Therefore the sum of the double 
pl.ΖΓΚ and sq.ΖΚ is equal to sq.ΖΗ. Therefore sq.ΖΗ is greater than sq.ΖΓ by 
sq.ΓΚ. And it will be proved from this that ΘΖ is greater than ΖΗ and ΖΗ  is 
greater than ΖΓ. 
 So ΖΓ is the shortest and those [straight lines] that are closer to it are 
shorter than those which farther. And it is proved that the excess of the square 
on each of them over the square on the shortest straight line is of the another 
of the square on the segment cut off from the axis towards the vertex of the 
section by the perpendiculars from the ends of the straight lines. 
 

[Proposition] 5 
 

 But is taken on the axis of a hyperbola such that its distance from the 
vertex of the section is equal to the half of the latus rectum, then in this case 
the same result will obtain as happened in the parabola, except that the incre-
ments of the square on the straight lines over the square on the minimal 
straight line will be equal to the rectangular plane on the straight line joining the 
foot of [each of] the perpendiculars to the vertex of the section which is similar 
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to the rectangular plane  under the transverse diameter and a straight line equal 
to the sum of the transverse diameter and the latus rectum where the trans-
verse diameter corresponds to straight line joining [the foot of] each of the 
perpendicular and the vertex of the section 8. 
 Let there be the hyperbola ΑΒΓ whose axis be ΓΕ, and let the half of the 
latus rectum be ΓΖ. From Ζ the straight lines ΖΑ, ΖΒ, ΖΓ, ΖΗ, and ΖΘ. 
To the section ΑΒΓ, as many as we please.  
 I say that ΖΓ is the least of the straight lines drawn from Ζ to the section, 
and that those which are closer to it are shorter than those farther, and that for 
each of the straight lines ΖΘ, ΖΗ, ΖΒ, and ΖΑ the square on ΓΖ is smaller than the 
square on it by an amount equal the rectangular plane on the segment between 
the foot of the corresponding perpendicular and Γ which similar to the rectangu-
lar plane under ΔΓ which is the transverse diameter of the section and a straight 
line equal to the sum of ΔΓ and the latus rectum. So let the latus rectum. So let 
the latus rectum be ΓΧ, and the half of it be ΓΚ, and the center of the section 
be Φ. 
 [Proof]. For let the perpendiculars ΘΜΝ, ΗΛΞ, and ΑΕΠ, to ΓΕ be drawn 
and continued, and the perpendicular ΒΖ be continued to Ο, and ΚΤ and ΣΝ par-
allel to ΓΜ be drawn. Then sq.ΘΜ is equal to the double quadrangle ΓΚΝΜ, as is 
proved in Theorem I of this Book. And sq.ΖΜ is equal to the double the triangle 
ΖΜΙ because ΖΜ is equal to ΜΙ for ΓΚ is equal to ΓΖ. Therefore sq.ΘΖ is equal to 
the sum of double triangles ΓΚΖ and ΚΝΙ for sq.ΘΖ is equal to the sum of sq.ΘΜ 
and sq.ΜΖ. But sq.ΓΖ is equal to the double triangle ΓΚΖ because ΓΖ is equal to 
ΓΚ. And the quadrangle ΣΝΙΥ is equal to the double triangle ΙΚΝ.Therefore sq.ΓΖ 
is less than sq.ΘΖ by the quadrangle ΥΣΝΙ. And pl.ΔΓΧ is equal to  pl.ΦΓΚ and as 
ΦΓ is to ΓΚ, so ΚΤ is to ΤΝ. But ΚΤ is equal to ΤΙ because ΙΜ is equal to ΜΖ [for 
ΓΚ is equal to ΓΖ]. Therefore pl.ΔΓΧ is equal to ΙΤΝ, and invertendo as ΧΓ is ΓΔ, 
so ΤΝ is to ΤΙ. And componendo as the sum of ΧΓ and ΓΔ is to ΓΔ, so ΝΙ is to ΤΙ. 
 But ΤΙ is equal to ΥΙ, therefore as ΝΙ is to ΥΙ, so the sum ΧΓ and ΓΔ is to 
ΓΔ. Let ΧΓ be continued to Ψ, and let ΓΨ be equal to ΓΔ. Then as ΝΙ is to  
ΥΙ ,  so ΧΨ is to ΨϘ, and these sides that are in the same ratio and close the 
equal angles. Therefore the rectangular planes ΥΝ and Χo are similar, and 
ΥΙ, which is equal το ΓΜ,  corresponds to ΨϘ, which is equal to ΓΔ. Therefore the 
rectangular plane on ΓΜ similar to the rectangular plane under ΔΓ and a straight 
line equal to the sum of ΔΓ and the latus rectum is the quadrangle ΥΝ. There-
fore sq.ΘΖ is greater than sq.ΓΖ by an amount equal to the rectangular plane on 
ΓΜ similar to the rectangular plane under ΓΔ and the segment equal to the sum 
of ΓΔ and the latus rectum. 
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 Similarly too it will be proved that sq.ΖΗ is greater than sq.ΖΓ by an 
amount equal to rectangular plane on ΓΛ similar to the mentioned plane. 
 And I say that sq.ΒΖ is greater than  sq.ΓΖ by an amount corresponding to 
the mentioned plane for sq.ΒΖ is equal to the double area ΓΚΟΖΙ, as is proved in 
Theorem I of this Book. 
 But sq.ΓΖ is equal to the double triangle ΓΚΖ. Therefore sq.ΒΖ is greater 
than sq.ΓΖ by the double triangle ΖΚΟ. 
 And similarly we will prove that the rectangular plane  that the double tri-
angle ΖΚΟ is the rectangular plane on ΓΖ similar to the mentioned plane. There-
fore sq.ΒΖ is greater than sq.ΓΖ by an amount equal to the double  rectangular 
plane on ΓΖ similar to the mentioned plane. 
 But I also say that sq.ΑΖ is in the same case as we mentioned for   
sq.ΑΕ is equal to the double quadrangle ΓΚΠΕ, as is proved in Theorem I of this 
Book. But sq.ΖΕ is equal to the double triangle ΡΖΕ.  
 Therefore sq.ΑΖ is equal to the sum of the double triangles ΡΚΠ and ΓΚΖ, 
for sq.ΑΖ is equal to the sum of sq.ΑΕ and sq.ΕΖ. But the double triangle ΓΚΖ is 
sq.ΓΖ. Therefore sq.ΑΖ without sq. ΓΖ is equal to the double triangle ΡΚΠ. 
 And similarly too we will prove that the rectangular plane equal to the 
double triangle ΡΚΠ is the rectangular plane on GE similar to the mentioned t 
plane. 
 And because the increments of the squares on these straight lines over 
the square on ΓΖ are the rectangular planes on ΓΕ, ΓΖ, ΓΛ, and ΓΜ, and these 
rectangular planes differ from each other, the rectangular plane on ΓΕ is greater 
than that on ΓΖ, and that on ΓΖ is greater than that on ΓΛ, and that on ΓΛ than 
that on ΓΜ, and ΓΖ is the least of the straight lines [so] drawn, and those of the 
other straight lines which are closer to it are smaller than those which are far-
ther. 
 And the square on each of straight lines [so] drawn is equal to the square 
on the least of these straight lines together with the rectangular plane on the 
segment between the foot of the perpendicular and Γ similar to the rectangular 
plane under ΓΔ and a segment equal to the sum of ΓΔ and the latus rectum  9-
10. 
 

[Proposition] 6 
 

 But if the same conditions as we mentioned hold, except that  the section 
is an ellipse, and the axis is  its major axis, then least of the straight lines drawn 
from that point is the one equal to the half of the latus rectum, and the great-
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est of them is the remainder of the axis. As for the other straight lines, those of 
them that are closer to the minimal straight line are less than those that are far-
ther from it. And each of them is greater than it by an amount equal to rectan-
gular plane on the segment between the foot of the perpendicular from it and 
the vertex of the section similar to the rectangular plane under the transverse 
diameter and the difference between the transverse diameter and the latus rec-
tum, where the transverse diameter corresponds to the segment between the 
foot of the perpendicular and the vertex of the section . 
 Let there be the ellipse ΑΒΓ whose  major axis be ΑΓ, and let ΧΔ be equal 
to the half of the latus rectum. And let from Δ to the section  ΔΖ, ΔΕ,  ΔΒ and 
ΔΗ are drawn. 
 I say that ΔΓ is the shortest of the straight lines drawn from Δ, and 
that ΔΑ is the longest of them, and that of the remaining straight lines those 
which are closer to ΔΓ are shorter than those which are farther, and that the 
square on each of them is greater than sq.ΔΓ by an amount equal to the rec-
tangular plane on the segment between the foot of its perpendicular and Γ simi-
lar to the rectangular plane under ΓΑ to together with excess of it over the 
latus rectum. 
       [Proof].For let ΓΘ  be made the half of the latus rectum, and the center 
be Ι, and the perpendiculars ΖΚΣ, ΕΛ, and ΒΔΡ [to the major axis] be drawn, and 
[from Α] a straight line ΑΞ  parallel to the ordinates is drawn , and ΤΥ and ΣΦ 
parallel to ΓΑ are drawn. Than sq.ΖΚ is equal to the double quadrangle ΓΘΣΚ, as 
is proved in Theorem I of this Book.  
 And sq.ΔΚ is equal to the double triangle ΚΤΔ for ΚΔ is equal 
to ΚΤ [because ΔΓ is equal to ΓΘ]. Therefore sq.ΔΖ is equal to the sum of the 
double triangles ΔΓΘ and ΤΘΣ. 
 But sq.ΔΓ is equal to the double triangle ΔΓΘ. And the quadrangle ΤΥΦΣ is 
equal to the double triangle ΤΘΣ, therefore sq.ΔΖ is greater than sq.ΓΔ by an 
amount equal to the quadrangle ΤΣΦΥ. And as ΙΓ is to ΓΔ, so ΑΓ is to latus rec-
tum, which is ΣΦ is to ΦΘ. Therefore as ΑΓ is to the latus rectum, so ΣΦ is 
to ΦΘ. 
       But ΣΦ is equal to ΥΘ therefore as ΑΓ is to the latus rectum, so ΥΘ is to  
ΘΦ. And convertendo as ΓΑ is to ΓΑ without the latus rectum, so ΘΥ is to ΥΦ. 
 But ΘΥ is equal to UT because ΓΔ is equal to ΓΘ. Therefore as ΥΤ is to ΤΣ, 
so ΑΓ is to ΑΓ without the latus rectum. 
 And ΑΓ corresponds to ΥΤ, which is equal to ΓΚ. Therefore the rectangu-
lar plane ΥΣ is equal to  the rectangular plane on ΚΓ similar to the rectangular 
plane under ΑΓ and its excess over the latus rectum. 
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 But sq.ΖΔ is greater than sq.ΔΓ by an amount equal to the rectangular 
plane ΥΣ. Therefore sq.ΖΔ is greater than sq.ΔΓ by an amount equal to the rec-
tangular plane on ΓΚ similar to the mentioned plane. 
 I also say that sq.ΒΔ is in the same case as the mentioned straight line 
[ΖΔ] for sq.ΒΔ is equal to the double quadrangle ΔΓΘΡ. And sq.ΓΔ is equal to the 
double triangle ΔΓΘ. Therefore sq.ΔΒ without sq.ΔΓ is equal to the double 
triangle ΔΘΡ. 
 But the rectangular plane on ΓΔ similar to the mentioned plane is equal to 
the double triangle ΔΘΡ. Therefore the difference between sq.ΔΒ and sq.ΔΓ is 
equal to the rectangular plane on ΓΔ similar to the mentioned plane. 
 I also say that sq.ΔΗ is grater than sq.ΔΓ by an amount equal to the rec-
tangular plane on ΜΓ similar to the mentioned plane for sq.ΗΜ is equal to the 
double area ΜΑΟΨ, as is proved in Theorem I of this Book. And sq.ΜΔ is equal 
to the double triangle ΔΜΝ because ΔΜ is equal to ΜΝ [for ΔΓ is equal to ΓΘ]. 
Therefore sq.ΔΗ is equal to the sum of the double triangle ΑΙΟ and the double 
area ΙΨΝΔ. 
 But the triangle ΟΑΙ is equal to the triangle ΓΘΙ. Therefore sq.ΔΗ is equal 
to the sum of the double triangle ΓΘΙ and the double area ΙΨΝΔ. And these [lat-
ter] are equal to the sum of the double triangles ΔΓΘ and ΝΘΨ. 
 But sq.ΓΔ is equal to the double triangle ΓΔΘ. Therefore sq.ΔΗ without 
sq.ΓΔ is equal to the double triangle ΝΘΨ. And the rectangular plane 
on ΓΜ similar to the mentioned plane is equal to the double triangle ΝΘΨ. There-
fore sq.ΔΗ without sq.ΔΓ is equal to the rectangular plane on ΓΜ similar to the 
mentioned plane. 
 Furthermore sq.ΑΔ is equal to the double triangle ΞΔΑ. But the triangle 
ΟΙΑ is equal to the triangle ΘΓΙ, so sq.ΑΔ is equal to the sum of the double tri-
angles ΞΘΟ and ΔΓΘ. But sq.ΓΔ is equal to the double triangle ΞΘΟ. And the rec-
tangular plane on ΓΑ similar to the mentioned rectangular plane is equal to the 
double triangle ΘΟΞ. Therefore sq.ΑΔ is greater than sq.ΔΓ by an amount equal 
to the rectangular plane on ΓΑ together with the excess of it over the latus rec-
tum. And the rectangular plane on ΓΑ is greater than that on ΓΜ, and that on 
ΓΜ is greater than that on ΓΔ, [and that ΓΔ is greater than that on ΓΛ, and that 
on ΓΛ is greater than that on ΓΚ].  
 Therefore ΓΔ is the smallest of the straight lines drawn from Δ to the sec-
tion, and ΔΑ is the greatest of them. And as for the other straight lines those of 
them drawn closes to shortest straight line are smaller than those drawn farther 
from it. And the square of each of them is greater than the square on the 
shortest straight line by an amount equal to the mentioned plane. 



177 

 
[Proposition] 7 

 
 If a point is taken on the  mentioned minimal straight lines in one of three 
section, and straight lines are drawn from it to the section, then the shortest of 
them is the straight line between the point and the vertex of the section, and 
those of other straight lines drawn in that half of the section closer to it are 
shorter than those drawn farther 11. 
 Let there be of a cone ΑΒΓΔ whose axis be ΔΗ. Let the minimal straight 
line be ΔΕ. Let there be an arbitrary point Ζ on ΔΕ. From it to the section 
straight lines ΖΓ, ΖΒ, and ΖΑ are drawn. 
 I say that ΔΖ is the shortest of them, and that those [of them] drawn 
closer to it are smaller than those drawn farther. 
 [Proof]. For let ΓΕ be drawn . Then ΓΕ is greater than ΕΔ. Therefore the 
angle ΓΔΕ is greater than the angle ΔΓΕ. By how much the more is the angle 
ΖΔΓ greater than  the angle ΔΓΖ, so ΓΖ is greater than ΖΔ. 
 Furthermore ΒΕ is greater than ΕΓ, so the angle ΒΓΕ is greater than the 
angle ΓΒΕ. So by how much the more is the angle ΓΒΖ less than the angle ΒΓΖ, 
therefore ΒΖ is greater than ΖΓ. 
 Similarly also it will be proved that ΑΖ is greater than ΒΖ. So ΔΖ is the 
shortest of the straight lines drawn from Ζ to the section, and as for other 
straight lines those of them drawn closer to ΔΖ are shorter than those drawn 
farther. 
 

[Proposition] 8 
 

If a point is taken on the axis of a parabola, the distance of which from the ver-
tex of the section is greater than the half of the latus rectum, and there is cut 
off on the axis from the point witch was taken on it towards the vertex of the 
section a straight line equal to the half of the latus rectum, and from the 
[other] end of that straight line which was cut off there is drawn a perpendicu-
lar to the axis, and that perpendicular is continued to meet the section, and 
there is drawn from the place there it meets the section a straight line to the 
taken point, then that straight line is the shortest of the straight lines drawn 
from the taken point on the axis to the section, and of all other straight lines on 
both sides [of it] those drawn closer to it are shorter than those drawn farther, 
and the square on each of them is greater than thee square on the shortest 
straight line by an amount equal to the square on the segment between the 
feet of the perpendiculars to the axis from two of them. 12 
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 Let there be the parabola ΑΒΓ whose axis ΓΔ, and let ΓΕ be longer than 
the half of the latus rectum, and let the half of the latus rectum be ΖΕ. The per-
pendicular ΖΗ to ΓΕ is drawn and ΕΗ is joined. 
 I say that ΕΗ is the shortest of the straight lines drawn from Ε to the sec-
tion,  and as for other straight lines drawn from [Ε to] ΑΒΓ  those of them 
drawn closer to ΕΗ are shorter than drawn farther on both sides. From Ε to the 
section ΕΚ, ΕΛ, ΕΘ, and ΕΑ are drawn. 
 I say also that the square on each of these straight lines are greater than 
sq.ΕΗ be an amount equal to the square on the segment between the foot of 
the perpendicular from it and Ζ. 
 [Proof]. For let the perpendiculars [ΚΞ, ΛΜ, ΘΧ, and ΑΔ] be drawn and let 
ΒΕ be a perpendicular [to the axis],and let ΓΝ be the half of the latus rectum. 
Then the double pl.ΝΓΞ is equal to sq.ΚΞ, as is proved in Theorem 11 of Book I, 
and the double pl.ΝΓΞ is equal to the double pl.ΕΖ, ΓΞ. 
 We  make the sum of the double pl.ΕΖΞ, sq.ΕΖ, and sq.ΖΞ common. Then 
the sum of the double pl.ΕΖ,ΓΞ ,the double pl.ΕΖΞ, sq.ΕΖ, and sq.ΖΞ is equal to 
the sum sq.ΚΞ and sq.ΞΕ which sq.ΚΕ .But the sum of the double pl.ΕΖ,ΓΞ and 
the double pl.ΕΖΞ is equal to the double pl.ΓΖΕ. Therefore sq.KE is equal to the 
sum of the double pl.ΓΕΖ, sq.ΖΞ, and sq.ΕΖ. But the double pl.ΓΖΕ is equal to 
sq.ΖΗ because ΖΕ is equal to ΓΝ. Therefore the sum of sq.ΖΗ, sq.ΖΕ, and sq.ΖΞ 
is equal to sq.ΕΚ. But the sum of sq.ΖΗ and sq.ΖΕ is equal to sq.ΕΗ. 
Therefore sq.ΚΕ is equal to the sum of sq.ΕΗ and sq.ΖΞ. Therefore the amount 
by which sq.ΚΕ is greater than sq.ΕΗ is equal to sq.ΖΞ .  
 Similarly also it will be proved that the difference between sq.ΕΛ and 
sq.ΕΗ is equal to sq.ΜΖ. And since the double pl.ΓΖΕ is equal to sq.ΖΗ [because 
ΖΕ is equal to ΓΝ], therefore the difference between sq.ΓΕ and sq.ΕΗ is equal to 
sq.ΓΖ. And ΖΞ is smaller than ΖΜ, which is smaller than ΖΓ. 
 Therefore EH is the least of the straight lines drawn from Ε to the section 
on the side of Γ. 
 Furthermore sq.ΒΕ is equal to the double pl.ΝΓΕ and is equal to the dou-
ble pl.ΓΕΖ. And the double pl.ΓΖΕ is equal to sq.ΖΗ. Therefore sq.ΒΕ is equal to 
the sum of sq.ΗΕ and sq.ΕΖ. Therefore amount by which sq.ΒΕ is greater than 
sq.ΕΗ is equal to sq.ΖΕ. 
 Furthermore sq.ΧΘ is equal to the double pl.ΓΧ,ΖΕ because ΖΕ is equal to 
ΓΝ. We make sq.ΧΕ common. Then the sum of the double pl.ΓΖΕ, the double 
sq.ΖΕ, and the double sq.ΖΧ is equal to sq.ΕΘ. But the sum of the double 
pl.ΧΖΕ, and the double sq.ΖΕ is equal to sq.ΕΗ. Therefore sq.ΕΘ without sq.ΕΗ is 
equal to sq.ΖΧ. 
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 Similarly also it will be proved that sq.ΑΕ  without sq.ΕΗ is equal to sq.DZ. 
But ΔΖ is greater than ΖΧ, which is greater than ΖΕ. 

Therefore ΕΗ is the least of the straight lines drawn from Ε to the sec-
tion, and those drawn closer to it are smaller than those drawn farther, and the 
difference between them and it is equal to the square on the segment between 
the foot of the perpendicular from it and Ζ. 
 

[Proposition] 9 
 

If a point is taken on the axis of a hyperbola such that the distance between it 
and the vertex of the section is greater than the half of the latus rectum, and 
the segment between the taken point and the center is cut in two parts such 
that as one is to other, so the transverse diameter is to the latus rectum, and 
the segment next to the center is one corresponding to the transverse diame-
ter, and there is drawn from the point at which that segment was cut  a per-
pendicular to the axis so as to meet the section and the segment  between the 
point of its meeting  and the taken point is joined, then that joined straight line 
is the least of thee straight lines drawn from the taken point to the section,  
and as for the other straight lines on either side of it those of them drawn 
closer [to it] are smaller than those drawn farther, and the amount by which the 
square on each of them is greater than the square on it is equal to the rectan-
gular plane on the segment between the foot the perpendiculars from two of 
them similar to the rectangular plane under the transverse diameter and a seg-
ment equal to the sum of the transverse diameter and the latus rectum when 
the side corresponding to the transverse diameter is the segment between two 
perpendiculars 13. 
 Let there be the hyperbola ΑΒΓ whose external axis ΩΔ and center Η. Let 
ΓΕ  be greater than the half of the latus rectum. Let as ΗΒ  is to ΖΕ, so trans-
verse diameter is to the latus rectum [Then Ζ falls between Γ and Ε] from Ζ a 
perpendicular ΖΘ to the axis is drawn, and ΘΕ is joined. 
 I say that ΕΘ is the smallest of the straight lines drawn from Ε to the sec-
tion, and that [other straight lines] on both sides  those drawn closer to it are 
smaller than those drawn farther, and that the difference between the square 
on each of them and the square on it is equal to rectangular plane on the seg-
ment between the feet of their two perpendiculars similar to the rectangular 
plane under the transverse diameter and a segment equal to the sum of the 
transverse diameter and the latus rectum, when the transverse diameter corre-
sponds to the segment between two perpendicular. 
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 [Proof]. For let the half of the latus rectum be made ΓΙ, and let the per-
pendicular ΛΝ and ΚΞ and other perpendicular [ΒΕ, ΜΤ, and ΑΔ], be drawn and 
continued in a straight line. Let ΗΙΨ be joined [to meet the perpendicular at Ο, 
Ρ, Φ, Χ, and Ψ] and ΡΕ be joined and continued in both directions [to meet ΜΧ 
at Γ, ΚΟ�, and ΓΙ at Υ] . Then as ΓΗ is to ΓΙ, so the transverse diameter is to 
the latus rectum. But as ΓΗ is to ΓΙ, so ΗΖ is to ΖΡ ,and  as ΗΖ is to ΖΕ. There-
fore ΖΕ is equal to ΖΡ. 
 But sq.ΖΘ is equal to the double area ΓΙΡΖ, as is proved in Theorem 1 of 
this Book, and sq.ΖΕ is  equal to the double triangle ΖΕΡ. Therefore sq.ΘΕ is 
equal to the double area ΓΕΡΙ. 
 Furthermore sq.ΚΞ is equal to the double area ΟΞΓΙ, as is proved in Theo-
rem 1 of this Book, and sq.ΕΞ is equal to thee double triangle ΕΞ�.  
Therefore sq.ΚΕ is equal to the sum of the double area ΡΕΓΙ and the double  tri-
angle ΡΟ�. 
 But it was proved that sq.ΘΕ is equal to the double area ΡΕΓΙ. Therefore 
sq.ΕΚ without sq.ΘΕ is equal to the double triangle ΡΟ�. 
 Let the straight lines ΟΣ, ΡΠ,  and �Ϙ be drawn parallel to ΓΔ. Then as 
HG is to ΓΙ, so �Π is to ΠΟ because ΡΠ is equal to Π�. 
 So as �Π is to ΠΟ so the transverse diameter is to the latus rectum. 
 Therefore as Π� is to �Ο, so transverse diameter is to a segment 
equal to the sum of the transverse diameter and the latus rectum.  
 But Π� is equal to �Ϙ. Therefore the rectangular plane ΣΟ�Ϙ is similar to 
the rectangular plane under the transverse diameter and a segment equal to the 
sum of the transverse diameter and the latus rectum. 
And the quadrangle ΣΟ�Ϙ is equal to the double triangle ΟΡ�, which is the dif-
ference between sq.ΕΚ and sq.ΕΘ. 
 And ΣΟ is equal to ΖΞ. Therefore sq.ΚΕ without sq.ΘΕ is equal to the rec-
tangular plane on ΖΞ similar to the mentioned plane when the transverse diame-
ter corresponds to ΖΞ. 
 Similarly also it will be proved that sq.ΕΛ without sq.ΕΘ is equal to  
rectangular plane on ΖΝ similar to the mentioned plane when again the trans-
verse diameter corresponds to ΖΝ. 
 Furthermore sq.ΓΕ is equal to the double triangle ΓΥΕ, and sq.ΕΘ is equal 
to the double quadrangle ΓΕΡΙ, as is proved in Theorem 1 of this Book. 
 Therefore sq.ΓΕ without sq.ΕΘ is equal to the double triangle ΥΡΙ. 
 But the double triangle ΥΡΙ is equal to the rectangular plane on ΓΖ similar 
to the mentioned . Therefore sq.ΓΕ without sq.ΕΘ is equal to the rectangular 
plane on ΓΖ similar to the mentioned plane. 
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And ΖΞ is smaller than ΖΝ, which is smaller than ΖΓ. Therefore ΘΕ is smaller than 
ΕΚ, which is smaller than ΕΛ, which is smaller than ΕΓ. 
 Therefore ΕΘ is the least of the straight lines drawn from Ε to the section 
on the one side that towards Γ. 
 Furthermore sq.ΒΕ is equal to the double quadrangle ΓΙΦΕ, as is proved in 
Theorem 1 of this Book, and it was proved that sq.ΘΕ is equal to the double 
quadrangle ΓΙΡΕ. Therefore sq.ΕΒ without sq.ΕΘ is equal to the double  
triangle ΦΕΡ, and the rectangular plane on ΖΕ similar to the mentioned  plane is 
equal to the double that triangle. 
 Furthermore sq.ΜΤ is equal to the double quadrangle ΤΧΙΓ, as is proved in 
Theorem 1 of this Book, and sq.ΤΕ is equal to the double triangle ΤΕς. Therefore 
sq.ΜΕ is equal to the sum of the double triangle ςΧΡ and the double quadrangle 
ΓΙΡΕ. 
 But it was proved that sq.ΘΕ is equal to the double quadrangle ΓΙΡΕ. And 
the rectangular plane on ΕΤ similar to the mentioned plane is equal to the dou-
ble triangle ςΡΧ. 
 Similarly also it can be proved that sq.ΕΛ without sq.ΘΕ is equal to the 
rectangular plane on ΖΔ similar to the mentioned plane. And ΕΖ is smaller than 
ΖΤ which is smaller than ΕΛ. Therefore ΘΕ is smaller than ΕΒ which is smaller 
than ΕΜ which is smaller ΕΛ. Therefore ΕΘ is the least of the straight lines 
drawn from Ε to the section, and of the straight lines on either side of ΘΕ those 
of them drawn closer to ΘΕ are smaller than those drawn  farther, and the 
square on each of them is greater than the square on ΘΕ by an amount equal to 
the rectangular plane on the segment between the feet of their perpendiculars 
and the foot of its perpendicular similar to the mentioned rectangular plane.  
 

[Proposition] 10 
 

 If a point is taken on the major axis of an ellipse such that the distance 
between that point and the vertex of the section is longer than the half of the 
latus rectum, and as the segment between the vertex of the section and the 
taken point on the axis is cut at a point such that the segment between the 
center of the section and the point at which the cut  was made is to the seg-
ment between that [latter] point and the first taken point, so the transverse di-
ameter is to the latus rectum, and from the point at which the cut was made a 
perpendicular is drawn to the axis to meet the section, and from the point 
where it meets [the sections] a straight line is drawn to the first taken point, 
then this straight line is the smallest of the straight lines drawn from the taken 
point to the section,  and of the remaining straight lines [drawn from that point 



182 

to the section] those of them drawn closer to that straight line are smaller than 
those drawn farther, and the amount by which [each of] the squares on them is 
greater than the square on it is equal to the rectangular plane on the segment 
between feet of the perpendiculars from them and the foot of the perpendicular 
from it which is similar to the rectangular plane under the transverse diameter 
and the excess of the transverse diameter over the latus rectum when the 
transverse diameter corresponds to that segment 14.  
 Let there be the ellipse ΑΒΓ whose major axis be ΑΓ,  and center Δ. Let 
ΕΓ be greater than the half of the latus rectum, and as ΔΖ is to ΖΕ, so ΑΓ is to 
the latus rectum. From Ζ a perpendicular to the major axis is drawn, namely ΖΗ, 
it is continued to Τ, and ΕΗ is joined. 
 I say that ΕΗ is the smallest of the straight lines, drawn from Ε to the 
section, and that of thee other straight lines [drawn from Ε to the section] 
those of them drawn closer to that straight line are smaller than those drawn 
farther and that the amount by which their are squares are greater than its 
square is equal to the rectangular plane on the segment between the feet of 
the perpendiculars from them and Ζ similar to the rectangular plane under the 
diameter ΑΓ and the excess of that diameter over the latus rectum then the di-
ameter ΑΓ corresponds to the segment between Ζ and the foot of the perpen-
dicular. 
 [Proof]. For let the straight lines [ΚΕ, ΘΕ, ΛΕ, and ΜΕ] and the perpen-
diculars [ΚΣ, ΘΡ, ΛΔ, ΜΠ, and ιΑ] be drawn as in the diagram, and let ΒΕ be 
perpendicular to ΑΓ, and let ΓΝ be the half of the latus rectum. ΝΔ, ΤΕ are 
joined and continued [and ΘΡ is continued to meet them at Χ and Ψ, and ΒΕ is 
continued ΝΔ at Ϙ]. 
 Then as ΔΓ is to ΓΝ, so the transverse diameter is to the latus rectum 
therefore as ΔΖ is to ΖΕ, so ΔΓ is to ΓΝ. But as ΔΓ is to ΓΝ, so ΔΖ is to ΖΤ, 
therefore as ΔΖ is to ΖΕ so ΔΖ is to ΖΤ. Therefore ΖΕ is equal to ΖΤ. 
 Let Τ�, ΧΥ, and ΨΦ be drawn parallel to ΑΓ. Then sq.ΖΕ is equal to the 
double triangle ΖΕΤ, and sq.ΖΗ is equal to the double quadrangle ΖΓΝΤ, as is 
proved in Theorem 1 of this Book. Therefore sq.ΕΗ is equal to the double quad-
rangle ΝΓΕΤ. 
 Furthermore sq.ΘΡ is equal to the double quadrangle ΓΡΧΝ, as is proved in 
Theorem 1 of this Book, and esq. is equal to the double triangle ΡΨΕ. Therefore 
sq.ΕΘ is equal to the sum of the double quadrangle ΓΝΤΕ and the double trian-
gle ΨΤΧ. 
 But sq.ΕΗ was shown to be equal to the double quadrangle ΓΝΤΕ. 
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Therefore sq.ΕΘ without sq.ΕΗ is equal to the double triangle ΤΨΧ. But the dou-
ble triangle ΤΨΧ is equal to the quadrangle ΨΦΥΧ. 
 Furthermore as ΕΖ is to ΖΤ, so Τ� is to �Ψ. But ΕΖ is to ΖΤ.  Therefore Τ� 
is equal to �Ψ. And as Τ� is to �Χ , so ΔΓ is to ΓΝ. 
Therefore as �Ψ is to �Χ ,so ΔΓ is to ΓΝ. 
 But as ΔΓ is to ΓΝ, so the transverse diameter is to the latus rectum. 
Therefore as �Ψ is to �Χ , so the transverse diameter is to the latus rectum. 
 Convertendo as �Ψ is to ΨΧ, so the transverse diameter is to the excess 
of the transverse diameter over the latus rectum; 
 But �Ψ is equal to ΦΨ, so the quadrangle ΧΨΦΥ is similar to the rectan-
gular plane under the transverse diameter and its excess over the latus rectum. 
Therefore sq.ΕΘ without sq.ΕΗ is equal to the rectangular plane on ΖΡ similar to 
the mentioned one where ΖΡ corresponds to the transverse diameter. 
 Similarly also it will be proved that sq.ΚΕ without sq.ΕΗ is equal to the 
rectangular plane on ΖΣ similar to the mentioned  plane, and that sq.ΕΓ without 
sq.ΕΗ is equal to the rectangular plane on ΖΓ similar to the mentioned plane. 
 But ΖΡ is smaller than ΖΣ, which is smaller than ΖΓ. Therefore ΕΗ is smaller 
ΕΘ, which is smaller than ΕΚ, which is smaller than ΕΓ. 
 Furthermore  sq.ΒΕ is equal to the double quadrangle ΕΓΝϘ, as is proved 
in Theorem 1 of this Book. And sq.ΕΗ is equal to the double quadrangle ΕΓΝΤ, 
as we moved above. Therefore sq.ΒΕ without sq.ΕΗ is equal to the double 
triangle ΕΤϘ.  
 But the double triangle ΕΤϘ is equal to the rectangular plane on ΖΕ similar 
to the mentioned  plane, and that will proved in the way described  previously. 
 Furthermore sq.ΔΛ is equal to the double triangle ΔΓΝ, as is proved in 
Theorem 2 of this Book. And sq.ΔΕ is equal to the double triangle ΔΕς. 
Therefore sq. ΛΕ is equal to the sum of the  double triangle ΔςΤ and the double 
quadrangle ΓΝΤΕ. Therefore sq.ΛΕ without sq.ΕΗ is equal to the double triangle 
ΔςΤ. 
 But the double triangle ΔςΤ is equal to the rectangular plane on ΔΖ similar 
to the mentioned plane. 
 Furthermore sq.ΜΠ is equal to the double quadrangle ΞΟΠΛ, as is proved 
in Theorem 3 of this Book.  
 And sq.ΠΕ is equal to the double triangle ΠΕΩ. Therefore sq.ΜΕ is equal 
to the sum of the double triangle ΞΔΛ and the double quadrangle ΩΕΔΟ. 
 But the triangle ΞΔΛ is equal to the triangle ΓΔΝ. Therefore sq.ME is equal 
to the sum of the double quadrangle ΓΕΤΝ and the triangle ΟΤΩ.  Therefore 
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sq.ΜΕ without sq.ΕΗ is equal to the double triangle ΩΤΟ. But the double triangle 
ΩΤΟ is equal to the rectangular plane on ΖΠ similar to the mentioned plane. 
 Furthermore sq.ΕΑ is equal to the double triangle ΑΕιι, and the triangle 
ΔΓΝ is equal to the triangle ΑΔΞ. Therefore sq.ΕΑ is equal to the sum of the 
double triangle ΤΞιι and the quadrangle ΓΕΤΝ. Therefore sq.ΑΕ without sq.ΕΗ is 
equal to the double triangle ΤΞι. But the double triangle Ξι is equal to the rec-
tangular plane on ΑΖ similar to the mentioned  plane. 
 And ΕΖ is smaller than ΖΔ which ΖΠ, which is smaller than ΖΑ. Therefore 
ΒΕ is smaller than ΕΛ which is smaller than ΕΜ which is smaller than ΕΑ. 
 Therefore ΕΗ is the least of the straight lines drawn from Ε to section 
ΑΒΓ, and as for the rest of the straight lines on both sides [of ΕΗ] those drawn 
closer to ΕΗ are smaller than those drawn farther, and the amounts by which 
the squares on them are greater than the square on it are equal to the rectan-
gular planes on the segments between the feet of their perpendiculars and the 
foot of its perpendicular similar to the mentioned plane 15. 
  

[Proposition] 11 
 

 The smallest of the straight lines drawn from the center of an ellipse to 
the boundary of the section is the half of the minor axis, and the graters of 
them is the half on the major axis, and those straight lines drawn [from the cen-
ter] closer to the longest straight line are greater than those drawn farther, and 
the amount by which the square on each of those straight lines is greater than 
the square on the shortest straight line is equal to the rectangular plane on the 
segment between the foot of the perpendicular [from that straight line] and the 
center similar to the rectangular plane under the transverse diameter and the 
excess of it and over the latus rectum 16. 
 Let there be the ellipse ΑΒΓ whose major axis be ΑΓ and minor axis ΒΔ. 
 I say that the longest of the straight lines drawn from the center Ε to the 
section is ΕΓ, and the shortest of them is ΕΒ, and that of the other the straight 
lines between ΕΒ and ΕΓ those of them drawn closer to ΓΕ are greater than 
those drawn farther from it, and that the amounts by which the squares on 
them are greater the square on ΒΕ are equal to the rectangular planes on the 
segments between the feet of the perpendiculars from them onto ΑΓ and Ε 
similar to the rectangular plane under ΑΓ and the excess of ΑΓ over the latus 
rectum. 
 [Proof]. For let ΕΖ and ΕΗ be drawn, and the perpendiculars ΖΙ and ΗΠ are 
dropped. Let the half of the latus rectum be ΓΘ. Then ΓΘ is smaller than 
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ΓΕ. So let ΓΚ be equal to ΓΕ. Let ΘΕ and ΕΚ be joined, and  ΗΠ and ΖΙ are con-
tinued to Ο and Ξ, and ΜΛ and ΝΞ be drawn parallel to ΑΓ. Then pl.ΕΓΚ is equal 
to ΕΙΞ. But ΕΓ is equal to ΓΚ, therefore ΕΙ is equal to ΞΙ. And sq.ΓΖ is equal to 
the double quadrangle ΓΘΛΙ, as is proved in Theorem 1 of this Book. 
 And sq.IE is equal to the double triangle ΙΕΞ. Therefore sq. ΖΕ is equal to 
the sum of the double triangles  ΕΓΘ and ΕΛΞ. And sq.ΕΒ is equal to the double 
triangle ΕΓΘ, as is proved in Theorem 2 of this Book. 
 And the double triangle ΕΛΞ is equal to the quadrangle ΛΞΜΝ. Therefore 
sq.ΕΖ without sq.ΕΒ is equal to the quadrangle ΛΝ. And as ΚΓ is to ΓΘ, so the 
transverse diameter is to the latus rectum, and as ΚΓ is to ΓΘ, so ΞΙ is to ΙΛ, 
and convertendo as ΞΙ is to ΞΛ so the transverse diameter is to the excess of 
the transverse diameter over the latus rectum. 
 But ΞΙ is equal to ΞΝ. Therefore thee quadrangle ΛΞΝΜ is similar to the 
rectangular plane under the transverse diameter and its excess over the latus 
rectum. But ΛΜ is equal to ΙΕ. Therefore sq.ΕΖ without sq.ΕΒ is equal to the 
rectangular plane on ΙΕ similar to the mentioned plane. 
 Similarly also it will be proved that sq.ΕΗ without ΕΒ is equal to the rec-
tangular plane on ΕΠ similar to the plane.  
 Furthermore sq.ΓΕ is equal to the double triangle ΓΕΚ, and sq.ΒΕ is equal 
to the double triangle ΓΕΘ. Therefore sq.ΓΕ without sq.ΒΕ is equal to the double 
triangle ΕΚΘ. But the double triangle ΕΚΘ is equal to the rectangular plane on 
ΓΕ similar to the mentioned plane. 
 And ΕΓ is greater than ΕΠ which is greater than ΕΙ. Therefore ΕΓ is 
greater than ΕΗ which is greater than ΕΖ, which is greater than ΕΒ. 
 Therefore the longest on the straight lines drawn from Ε is ΕΓ, and the 
shortest of them is ΕΒ, and as for the other straight lines [from Ε] between ΕΒ 
and ΕΓ those of them drawn closer to ΕΓ are longer than those drawn farther, 
the amount by which the square on each of then is greater than the square  on 
ΕΒ is equal to the rectangular plane on the segment between the foot the per-
pendicular  from it onto ΑΓ and the center similar to the mentioned plane. 
 

[Proposition] 12 
 

 If a point is taken on one of the straight lines which has been proved to 
be minimal on straight lines drawn from some point on the axis to one of the 
[three] sections and straight lines are drawn from that [first] point to the sec-
tion on one side, then the shortest of them is the segment of the minimal line 
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adjoining the section, and those drawn closer to it are shorter than those drawn 
farther 17. 
 Let there be the conic section ΑΒ whose axis ΒΓ and the minimal straight 
line drawn from some point on it be ΓΑ. On it an arbitrary point Δ is taken. I say 
that ΔΑ is the shortest of the straight lines drawn from Δ in that part of the 
section. 
 [Proof]. For let ΔΕ, ΔΖ, and ΔΒ be drawn, and ΖΓ, ΓΕ, ΑΕ, ΕΖ , and ΖΒ be 
joined then ΕΓ is greater than ΓΑ, so the angle ΓΑΕ is greater than the angle 
ΓΕΑ. But the angle ΓΕΑ is greater than the angle ΑΕΔ, therefore the angle ΕΑΔ 
is mush greater than the angle ΑΕΔ. Therefore ΕΔ is greater than ΔΑ. 
 Furthermore ΖΓ is greater than ΓΕ, therefore the angle ΖΕΓ is greater 
than the angle ΕΖΓ. Therefore the angle ΖΕΔ is much greater than the angle 
ΕΖΔ. Therefore ΖΔ is greater than ΔΕ. 
 Similarly also it will be proved that ΒΔ is greater than ΔΖ. Therefore ΑΔ is 
the smallest of the straight lines drawn in this part of the section, and those 
drawn closer to it are smaller than those drawn farther. 
 Similarly also it will proved  concerning those straight lines where they are 
drawn in the other part of the section. 
 

[Proposition] 13 
 

 If there is drawn from a point from the axis of a parabola the minimal of 
the straight lines drawn from that point to the section, so as to form an angle 
with the axis, then that angle which it forms with the axis will be acute, 
and if a perpendicular is dropped from its [other] end to the axis, then [that 
perpendicular] cuts off from it segment equal to the half of the latus rectum18. 
 Let there be the parabola ΑΒ whose axis ΒΓ, and the minimal straight line 
drawn [from Γ] in the parabola, ΑΓ. 
 I say that the angle at Γ is acute, and that the perpendicular drawn from 
Α to ΒΓ cuts off from it a segment equal to the half of the latus rectum. 
 [Proof]. For ΑΓ is minimal, so ΒΓ is greater than the half of the latus rec-
tum. For if it  were not greater than it, would be either equal to it or less 
than it. 
 But if it were equal to it, ΒΓ would minimal, as is proved in Theorem 4 of 
this Book. But that is not so for the minimal is ΑΓ. And if ΒΓ were less than the 
half of the latus rectum, then where a straight line equal to the half of the latus 
rectum was cut off from the axis the point at which the cut was made would be 
beyond Γ. Therefore it could be proved from Theorem 4 of this Book that ΒΓ is 
smaller than ΓΑ. Therefore ΒΓ is not smaller than the half of the latus rectum. 
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And we have proved that it is not equal to it. Therefore it is greater than it. 
Therefore let the [straight line] equal to the half of the latus rectum be ΓΔ.  
Then I say that the perpendicular drawn from Δ meets Α. 
 [Proof]. For let if that is not so the perpendicular be ΔΕ. Then ΕΓ is the 
shortest of the straight lines drawn from Γ to the section, as is proved in Theo-
rem 8 of this Book. But ΑΓ was the minimal. That is impossible. 
 Therefore the perpendicular drawn from Δ meets Α, and ΔΓ is equal to the 
half of the latus rectum, and the angle ΑΓΒ is acute. 
 

[Propositions] 14 
 

 If there is drawn from the axis of a hyperbola a straight line which is 
minimal of the straight lines drawn from that point, so  as to form with the axis 
two angles, then that angle of two which is towards the vertex of the section is 
acute, and if there is drawn from the [other] end of the minimal straight line a 
perpendicular to the axis, it cuts the straight line between the center of the 
section and the point on the axis from which the minimal line is drawn into two 
parts such that as that part adjacent to the center is to the other part, so the 
transverse diameter is to the latus rectum 19.  
 Let there be the hyperbola ΑΒ whose axis ΒΓ, and the minimal straight 
line ΑΓ drawn from Γ, and the center Δ. 
 I say that the angle ΑΓΒ is acute, and that the perpendicular falling from 
Α onto axis ΒΓ cuts ΓΔ into two parts such that as one  part of two is to the 
other, so the transverse diameter is to the latus rectum. 
 [Proof]. For ΒΓ is longer than the half of the latus rectum, as is proved 
from Theorem 4 of this Book. And ΒΔ is the half of the transverse diameter. 
Therefore the ratio ΔΒ to ΒΓ is less than the ratio of the transverse diameter to 
the latus rectum. 
 Therefore we cut ΔΓ into two parts at Ε such that as one of them is to 
the other, so the transverse diameter is to the latus rectum. 
 Then I say that the perpendicular drawn from Ε to ΔΓ reaches Α for if that 
is not so, let it be as perpendicular ΕΖ let ΓΖ be joined then GZ is the minimal 
straight line drawn from Γ, as is proved in Theorem 9 of this Book. 
 But the minimal  straight line was AG, that impossible. Therefore the per-
pendicular drawn from Ε reaches Α, therefore the angle ΑΓΒ is acute, and the 
perpendicular drawn from Α cuts ΓΔ into two parts such that as one of them is 
to the other, so the transverse diameter is to the latus rectum.  
 

[Proposition] 15 
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 If there is drawn from a point on the major of  two axes of an ellipse a 
straight line that is minimal of the straight lines drawn from that point, then 
that minimal straight line, if it was drawn from the center, is a perpendicular to 
the major axis 20. 
        Let there be the ellipse ΑΒΓ whose the major axis is ΑΓ  and the center Ι. 
 Let first from Ι the minimal straight line ΙΒ be drawn to the section.  
 I say that ΙΒ is perpendicular to ΑΓ . 
 [Proof]. For let it be not so, let ΙΔ be perpendicular to ΑΓ . Then, as is 
proved in Theorem 11 of this Book, ΙΔ is minimal straight line drawn from I to 
the section. But this straight line is ΙΒ, and this impossible, therefore ΙΒ is per-
pendicular to ΑΓ. 
 Furthermore let other point Η is taken on the major axis. Then the minimal 
straight line drawn from Η to the section is ΗΖ. 
 I say that the angle ΖΗΙ is obtuse, and that the perpendicular dropped 
from Ζ to ΑΓ is such that as the segment between the foot of the perpendicular 
and Ι is to the segment between  the foot of the perpendicular and Η, so the 
transverse diameter is to the latus rectum. If  ΖΗ is the minimal straight line 
drawn from Η [to the section] then as  is proved in Theorem 10 of this Book, 
then the ratio of ΓΙ to ΓΗ is less than the ratio of the transverse diameter to 
the latus rectum.  
 Let ΓΗ be divided at Κ so that as  ΙΚ is to ΗΚ, so the transverse diameter 
is to the latus rectum. I say that the perpendicular drawn from Κ passes 
through Ζ for if that is not so, let it be as ΚΛ, then ΛΗ is minimal of the straight 
lines drawn from Η, as is proved in Theorem 10 of this Book.  But the minimal of 
those straight lines was ΖΗ, and that is impossible. Therefore the perpendicular 
drawn from Κ passes through Ζ, and the angle ΙΗΖ is obtuse. So the perpendicu-
lar drawn from Ζ to ΑΓ is ΖΚ, and as ΙΚ is to ΚΗ, so the transverse diameter is 
to the latus rectum. 
 

[Proposition] 16 
 

 If a point is taken on the minor of two axes of an ellipse such that the  
segment of the minor axis between it and the vertex of the section is equal to 
the half of the latus rectum, then of the straight lines drawn from the point to 
the section the greatest is the part of the minor axis which is equal to the half 
of the latus rectum, and the smallest is the complement of the minor axis and 
of the other straight lines [so drawn] those of them drawn closer to the maxi-
mal straight line are longer than those drawn farther,  and the excess of the 
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square on it over the square on each of them is equal to rectangular plane on 
the segment between the foot of the perpendicular from it and the end of the 
minor axis similar to the rectangular plane under the minor axis and the excess 
of the latus rectum over it 21.  
 Let there be the ellipse ΑΒΓ whose minor axis ΑΓ and center Π,  let on 
the axis be taken Δ such that ΓΔ is equal to the half of the latus rectum. 
 I say that the greatest of the straight lines drawn from Δ to the section 
ΑΒΓ is ΔΓ, and the smallest of them is ΔΑ, and that of the remaining straight 
lines those drawn nearer to ΔΓ are longer than those farther, and that sq.ΓΔ is 
greater than the square on each of them by an amount equal to the rectangular 
plane on the segment between the foot of the perpendicular from it and Γ simi-
lar to the mentioned plane. 
 [Proof]. For let ΔΖ, ΔΕ, ΔΒ, and ΔΗ be drawn. Let ΔΒ be perpendicular to 
ΑΓ, and let the half of the latus rectum be ΓΞ, and ΞΠ and ΞΔ be joined and 
continued, and let the perpendiculars ΖΘ, ΕΚ, and ΗΛ be dropped, and ΑΡ paral-
lel to the ordinates be drawn, and ΜΤ, [Ψ]ΥΦ parallel to ΑΓ be drawn. Then ΓΔ 
is equal to ΓΞ. Therefore sq.ΓΔ is equal to the double triangle ΓΔΞ. 
 But sq.ΘΔ is equal to the double triangle ΔΘΜ, and sq.ΖΘ is equal to the 
double quadrangle ΓΞΥΘ, as is proved in Theorem 1 in this Book. Therefore  
sq.ΓΔ without sq.ΔΖ is equal to the double triangle ΥΜΞ. 
 But the double this triangle is the quadrangle ΤΜΥΦ, and as ΠΓ is to ΠΔ, 
so the transverse diameter is to the excess of the latus rectum over it [because 
as the half of the transverse diameter is to the half of the latus rectum, so the 
transverse diameter is to the latus rectum], and as ΠΓ is to ΠΔ, so ΥΦ is to ΥΨ, 
that is ΥΦ to ΥΜ. Therefore as ΥΦ is to ΥΜ, so the transverse diameter is to 
the excess of the latus rectum over it. 
 And ΥΦ is equal to ΓΘ. Therefore sq.ΓΔ without sq.ΔΖ is equal to the rec-
tangular plane on ΓΘ similar to the mentioned plane. 
 Similarly also it will be proved that sq.ΓΔ without sq.ΔΕ is equal to the 
rectangular plane on ΓΚ similar to the mentioned plane. 
 Furthermore sq.ΒΔ is equal to the double  quadrangle ΡϘΔΑ, as is proved 
in Theorem 3 of this Book, and sq.ΔΓ is equal to the double triangle ΔΓΞ, and 
the triangle ΡΠΑ is equal to the triangle ΓΞΠ. Therefore sq.ΓΔ without sq.ΔΒ is 
equal to the double triangle ΔϘΞ. 
 But the double this triangle is equal to the rectangular plane on ΓΔ similar 
to the mentioned plane. 
 Therefore ΓΔ is greater than ΔΖ, which is greater than  ΔΕ, which is 
greater than ΔΒ. 
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 Furthermore sq.ΛΗ is equal to the double quadrangle ΡΓΛΑ, as is proved 
in Theorem 3 of this Book. 
 And sq.ΛΔ is equal to the double triangle ΛΧΔ. Therefore sq.ΔΗ is equal to 
the sum of the double quadrangle ΡςΛΑ and the double triangle ΧΔΛ. 
 But sq.ΓΔ is equal to the double  triangle ΓΞΔ, and the triangle ΓΞΠ is 
equal to the triangle ΠΡΑ. Therefore sq.ΓΔ without sq.ΔΗ is equal to the double 
triangle ςΞΧ.  
 But the double this triangle is equal to the rectangular plane on ΓΛ similar 
to the mentioned plane. 
 Furthermore sq.ΔΑ is equal to the double triangle ΔΑΣ, and the triangle 
ΓΠΞ is equal to the triangle ΑΠΡ. Therefore sq.ΔΓ without sq.ΔΑ is equal to the 
double triangle ΡΞΣ. 
 But the double this triangle is equal to the rectangular plane on ΑΓ similar 
to the mentioned plane. 
 Therefore ΓΔ is the greatest of the straight lines drawn from Δ to the sec-
tion, and ΔΑ is the shortest of them, and of the other straight lines those drawn 
nearer to ΓΔ are greater than those drawn farther, and the excess of sq.ΓΔ over 
the squares on the other straight lines is equal to the rectangular plane on the 
segment between the foot of the perpendicular from [each of] them and Γ simi-
lar to the mentioned plane. 
 

[Proposition] 17 
 

Furthermore if ΑΓ [which is the minor axis of the ellipse]  equal to the half 
of the latus rectum and the center be made Ο, then I say that ΓΑ is the great-
est of the straight lines drawn from Α to the section, and those  [straight lines 
drawn closer to it are greater than those drawn farther,  and the difference be-
tween the square on it and the square on each of them is equal to the rectangu-
lar plane on the segment between the feet of the perpendiculars from [each of] 
them and Γ similar to the mentioned plane in the previous theorem 22. 
 [Proof]. For let the straight lines set up this diagram like the set up of the 
previous diagram be drawn. Then it will proved in the way proved there 
that sq.ΑΓ is greater  than sq.ΑΕ by an amount equal to the rectangular plane 
on ΓΘ similar to the mentioned plane. 
 Similarly also it will be proved that sq.ΑΓ is greater than sq.ΑΛ by an 
amount equal to the rectangular plane on ΓΗ. 
 Furthermore sq.ΒΖ is equal to the double quadrangle ΚΡΖΑ, as is proved in 
Theorem 3 of this Book. And sq.ΖΑ is equal to the double triangle ΑΞΖ.  
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 Therefore sq.ΑΒ is equal to the double quadrangle ΚΡΞΑ. And sq.ΓΑ is 
equal to the double triangle ΑΓΔ, because ΑΓ is equal to ΓΔ, and the triangle 
ΓΟΔ is equal to the triangle ΚΟΑ. Therefore sq.ΓΑ without sq.ΒΑ is equal to the 
double triangle ΡΞΔ. And the double this triangle is equal to the rectangular 
plane on ΓΖ similar to the mentioned plane, that will be proved as in the preced-
ing theorem. Therefore ΑΓ is greater than ΑΕ, which is greater than ΑΛ, which is 
greater than ΑΒ. 
 Therefore the greatest of the straight lines drawn from Α [to the section] 
is ΑΓ, and of the remaining straight lines those drawn closer to it are greater 
than those drawn farther, and the excess of sq.ΑΓ over the square on [each of] 
them is equal to the rectangular plane under the segment between the foot of 
the perpendicular from [each of] them and Γ similar to the mentioned plane. 
 

[Proposition] 18 
 

Furthermore if the minor axis of the ellipse is made ΑΓ, the center Ν, and the 
straight line equal to the half of the latus rectum ΓΔ [which is greater than ΑΓ], 
then I say that ΓΔ is the greatest of the straight lines drawn from Δ to the sec-
tion, and the smallest of them is ΔΑ, and that of the others straight lines which 
cut the section those drawn closer to ΓΔ are greater than those drawn farther, 
and for those straight lines which fall outside [the section] those drawn closer 
to ΑΔ are smaller than those drawn farther, and that sq.ΓΔ is greater than the 
square on each of them by the amount of the rectangular plane under the seg-
ment between Γ and the foot of the perpendicular [from the end of the seg-
ment] similar to the plane mentioned in two preceding theorems23. 
 [Proof] . For let ΔΖ, ΔΕ, ΔΒ be drawn and set up like in the preceding 
diagram. Then it will also be proved that sq.ΓΔ is greater than sq.ΔΖ by an 
amount equal to the rectangular plane under ΓΛ similar to the mentioned  plane, 
and that sq.ΔΓ is greater than sq.ΔΕ by an amount equal to the rectangular 
plane on ΓΘ similar to the mentioned plane ,  and that  sq. ΓΔ is greater than 
sq.ΔΒ by an amount equal to the rectangular plane on ΓΚ similar to the men-
tioned plane. 
 Furthermore sq.ΑΔ is equal to the double triangle ΑΔΣ [because ΔΓ is 
equal to ΓΜ], and sq.ΓΔ is equal to the double triangle ΔΓΜ, and the triangle 
ΓΜΝ is equal to the triangle ΞΑΝ, therefore sq.ΓΔ without sq.ΔΑ is equal to the 
double triangle ΞΜΣ. But the double triangle ΞΜΣ is equal to the rectangular 
plane on ΛΓ similar to the mentioned plane. 
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Therefore ΔΓ is greater than ΔΖ, which is greater than ΔΕ, which is greater 
than ΔΒ, which is greater than ΔΑ. 
 Furthermore sq.ΠΤ is equal to double quadrangle ΞΟΠΑ, as is proved in 
Theorem 3 of this Book, and sq.ΔΠ is equal to the double triangle ΔΠΡ. 

Therefore sq.ΤΔ s equal to the sum of the double quadrangle ΞΟΠΑ and 
the double triangle ΠΔΡ. And sq.ΓΔ is equal to the double triangle ΓΜΔ, and the 
triangle ΓΜΝ is equal to the triangle ΝΞΑ. Therefore sq.ΓΔ without sq.ΤΔ is 
equal to the double triangle ΟΜΡ. But the double triangle ΟΜΡ is equal to the 
rectangular plane on ΓΠ similar to the plane mentioned in two preceding theo-
rems. 
 Similarly too it will be proved that sq.ΓΔ is greater than sq.ΔΦ by an 
amount equal to the rectangular plane on ΓΥ similar to the mentioned plane, and 
that the difference between sq.ΓΔ and sq.Δ Ϙ is equal to the rectangular plane 
on ΓΗ similar to the mentioned plane. 
 And it has been shown that the difference between sq.ΓΔ and sq.ΔΑ is 
equal to the rectangular plane on ΓΑ similar to the mentioned plane. Therefore 
ΑΔ is smaller than ΔΤ which is smaller than ΔΦ which the smaller than ΔϘ. 
 Therefore ΓΔ is the greatest of the straight lines drawn from Δ [to the 
section] and ΔΑ is the least of them, and of the other straight lines which cut 
the section those of them  drawn closer to ΔΓ are grater than those drawn far-
ther, and for those [straight lines] which do not cut  the section, those of them 
drawn closer to ΑΔ are smaller than those farther, and the difference between 
the square  on [one of those] straight lines and sq.ΔΓ or sq.ΔΑ is equal to the 
rectangular plane on the segment between Γ [or Α] and the foot of the perpen-
dicular [from the other end of the segment] similar to the mentioned plane. 
 

[Proposition] 19 
 

 If a point is taken on the minor of two axes on a ellipse such that its  
difference from the vertices of the section is a distance greater than the half of 
the latus rectum, then the greatest of the straight lines drawn from that point 
to the section is the straight line drawn to the vertex of the section and of the 
others straight lines those drawn closer to it are greater than those drawn far-
ther24. 

Let there be the ellipse ΑΒ whose minor axis ΑΓ, and let for it Δ is taken 
and let Δ be greater than the half of the latus rectum, 
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 I say that ΓΔ is the greatest of the straight lines drawn from Δ to the sec-
tion, and that of the other straight lines those drawn closer to ΓΔ are greater  
than  those drawn farther. 
 [Proof]. For let the half of the latus rectum be ΓΗ, from ΔΕ, ΔΖ, and ΔΒ 
are drawn and ΗΖ, ΗΕ and ΗΒ are joined, and ΓΖ, ΖΕ, ΕΒ, and ΒΑ are joined. 
Then ΓΗ is greater than ΖΗ, because it was proved in three preceding theorems. 
Therefore the angle ΓΖΔ is greater than the angle ΖΓΔ, and ΓΔ is greater than 
ΔΖ. 
 Furthermore ΗΖ is greater than ΕΗ. Therefore the angle ΖΕΗ is greater 
than the angle ΕΖΗ. Therefore the angle ΖΕΔ is much greater than the angle 
ΕΖΔ. Therefore ΔΖ is greater than ΔΕ. 
 Similarly it will be proved that ΔΕ is greater than ΔΒ. 
 Therefore ΔΓ is the greatest of the straight lines drawn from Δ to the sec-
tion, and the remaining straight lines those drawn closer to it are greater than 
those drawn farther. 
 

[Proposition] 20 
 

 If a point is taken on the minor of two axes on a ellipse such that the 
segment between that point and the vertex of the section is smaller than the 
half of the latus rectum, but greater than the half of the [transverse] 
diameter, and the segment between the vertex of the section and its center 
is divided at a point such that as the segment between the center and that 
point at which the segment was divided is to the segment between that point 
and the first taken point, so the transverse diameter is to  the latus rectum, and 
there is drawn from this last point which was taken a perpendicular to the axis 
to meet the section, and a straight line id drawn from the point where it  
reaches [the section] to the first taken point, then the greatest of the straight 
lines drawn to the section from that first taken point is the straight line which 
was joined, and of the other straight lines those drawn closer to it are greater 
than those drawn farther, and the amount by which the square on it is greater 
than the square on each of them is equal to the rectangular plane on the seg-
ment between the second taken point and the foot of the perpendicular from 
[the end of] the segment similar to the rectangular plane under the transverse 
diameter and the amount by which the latus rectum is greater than it 25. 
 Let there be the ellipse ΑΒΓ whose minor axis ΑΓ, and let there be on it 
a point Δ such that ΓΔ is greater than the half of the transverse diameter which 
is ΑΓ, but smaller than the half of the latus rectum. Let the center be Ε, and let 
ΕΓ be divided at Μ such that as ΕΜ is to ΜΔ, so the transverse diameter which 
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is ΑΓ is to the latus rectum. [that is possible because the half of the latus rec-
tum is greater than ΓΔ]. Let from Μ a perpendicular to ΑΓ is drawn, namely ΖΜ, 
and let ΖΔ be joined. 
 I say that ΖΔ is the greatest of the straight lines drawn from Δ to the sec-
tion, and that of the straight lines drawn on both sides [of ΖΔ] those drawn 
nearer to it are greater than those drawn farther, and that the amount by which 
sq.ΖΔ is greater than the square on each of them is equal to the rectangular 
plane under the segment between Μ and the foot of the perpendicular from it 
similar to the mentioned plane. 
 [Proof]. For let ΔΓ, ΔΗ, ΔΖ, and ΔΑ arbitrary positions be drawn, let ΔΒ be 
a perpendicular to the axis, and let the half of the latus rectum be ΓΥ, and let 
perpendiculars ΘΝ, ΗΚ, ΖΜ, ΛΞ be drawn and, ΥΕ be joined and continued,  and 
the perpendiculars and the straight lines parallel to ΑΓ, as we did in the preced-
ing theorems, be drawn. Then as ΜΕ is to ΔΜ, so  the transverse diameter is to 
the latus rectum, that is ΕΓ is to ΓΥ. But as ΕΓ is to ΓΥ, so ΜΕ is to ΜΦ. There-
fore ΜΔ is equal to ΜΦ, and sq.ΜΔ is equal to the double be triangle ΜΔΦ.  And 
sq.ΜΖ is equal to the double quadrangle ΜΦΥΓ, as is proved in Theorem 1 of 
this Book. Therefore sq.ΖΔ is equal to the sum of the double triangle ΔΜΦ and 
the double quadrangle ΜΦΥΓ. 
 Furthermore sq.ΗΚ is equal to the double quadrangle ΚΓΥΡ, and sq.ΔΚ is 
equal to the double triangle ΚΙΔ. Therefore sq.ΔΗ is equal to the sum of the 
double triangle ΚΙΔ and the double quadrangle ΚΓΥΡ, and sq.ΔΖ without sq.ΔΗ is 
equal to the double triangle ΡΙΦ. 
 But this double triangle is equal to the rectangular plane on ΚΜ, which is 
equal to the mentioned plane [that will be proved in a way similar to that de-
scribed in the proof of Theorem 16 of this Book]. 
 Similarly also it will be proved that sq.ΔΖ without sq.ΔΘ is equal to the 
rectangular plane on ΜΝ similar to the mentioned plane. 
 Furthermore sq.ΓΔ is equal to the double triangle ΔΓΤ. Therefore sq.ΔΖ 
without sq.ΔΓ is equal to the double triangle ΤΥΦ, which is equal to the rectan-
gular plane on ΓΜ similar to the mentioned plane. 
 Therefore ΔΖ is greater than ΔΗ which greater than ΔΘ which is greater 
than ΔΓ. 
 Furthermore sq.ΔΒ is equal to the double quadrangle ΠΛΔΨ, as is proved 
in Theorem 3 of this Book. And it has already been shown that sq.ΔΖ is equal to 
the sum of the double triangles ΕΓΥ and ΔΕΦ. But the triangle ΕΓΥ is equal to 
the triangle ΠΕΑ. Therefore sq.ΔΖ without sq.ΔΒ is equal to the double triangle 
ΦΔΨ. And the double triangle ΦΔΨ is equal to the rectangular plane on ΜΔ simi-
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lar to the mentioned plane [that will be proved in a way  similar to the way 
which was in the proof of Theorem 16 of this Book]. 
 Similarly also it will be proved that sq.ΔΖ without sq.ΔΑ is equal to the 
rectangular plane on ΜΞ similar to the mentioned plane. 
 Therefore ΔΖ is the longest of the straight lines drawn from Δ to the sec-
tion, and for the others straight lines those of them drawn closer to ΔΖ are 
longer than those drawn farther,  and the amount by which sq.ΔΖ is greater than 
the square on each of them is equal to the rectangular plane on the segment 
between Μ and the foot of the perpendicular from it [the other end of the seg-
ment] similar to the mentioned plane. 
 Similarly also it will be proved that the half of the latus rectum is greater 
than the [transverse] diameter is equal to the minor axis, or if it is greater than 
it, then of the straight lines drawn from  the point Δ of first diagram, or from 
the point Α of the second diagram,  or from a point such as the point Δ outside 
the point Α of the third diagram, the greatest is the mentioned straight line. 
That will be proved in the second and third diagrams by a method similar to the 
one stated for the first diagram. 
 

[Proposition] 21 
 

 If a point is taken on the maximal straight line mentioned in the preceding 
theorem in the ellipse such that the distance between it and that 
end of the maximal straight line which lies on the section is greater than the 
maximal straight line, then the greatest of the straight lines drawn from that 
point [to the section] in one part of the section is the straight line of which the 
maximal is a part, and as for the straight line on either side  of it, those of them 
nearer to the straight line are greater than those drawn farther 26. 
 Let there be the ellipse ΑΒΓ whose [minor] axis ΑΓ, and let ΔΒ be the 
maximal straight line drawn from Δ, that is one mentioned in the theorem pre-
ceding this. Let ΒΔ be drawn and Ε be taken on it in such a way that ΒΕ is 
greater than the maximal straight line ΔΒ. 
 I say that the greatest of the straight lines drawn from Ε to the section is 
ΕΒ, and that of the other straight lines those drawn closer to it are greater than 
those drawn farther. 
 [Proof]. For let ΕΖ and ΕΗ be drawn, and ΔΖ, ΗΔ, and [also] ΓΕ, ΓΗ, ΗΖ, 
and ΖΒ be joined. 
 Then ΔΒ is greater than ΔΖ. Therefore the angle ΔΖΒ is greater than the 
angle ΖΒΔ. Therefore the angle ΕΖΒ is much greater than the single ΖΒΕ, and ΒΕ 
is greater than ΕΖ. 
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 Furthermore ΔΖ is greater than ΔΗ. Therefore the angle ΔΗΖ is greater 
than the angle ΔΖΗ. Therefore the angle ΕΗΖ is much greater than the angle 
ΕΖΗ, and therefore ΖΕ is greater than ΕΗ. 
 Similarly also it will be proved that ΕΗ is greater than ΕΓ. 
 Therefore ΕΒ is the longest of the straight lines drawn from Ε to the sec-
tion in this part of the section, and of the others straight lines those drawn 
closer to ΕΒ are greater than those drawn farther. 
 Similarly also what we  asserted will be proved if the maximal straight line 
proceeds from Α or from one of the other points which lie on the continued axis 
ΓΑ. 
 

[Proposition] 22. 
 

 If there is drawn from a point on the minor of two axes on an ellipse  a 
straight line such that it encloses together with the axis an angle, and that the 
straight line is maximal of the straight lines drawn from that point to the sec-
tion, then, if  that point is the center of the section, the maximal straight line is 
perpendicular to the minor axis, but if it is not the center, then the angle en-
closed between it and that part of the axis towards the center is acute, and if 
there is drawn from the [other] end of the straight line a perpendicular to the 
axis, then as the segment between the foot of its perpendicular and the center 
of the section is to the segment between the foot and the taken point, so the 
transverse diameter is to the latus rectum 27. 
 Let there be the ellipse ΑΒΓ whose minor axis ΑΓ. First let the maximal 
straight line come from the center, and be ΔΒ, then I say that ΔΒ is perpendicu-
lar to ΑΓ. 
 [Proof]. For let if that is not so,  the perpendicular be ΔΕ. Then ΔΕ is the 
greatest straight line drawn from Δ, as is proved in Theorem 11 of this Book. 
But the greatest was ΔΒ, which is impossible. Therefore ΔΒ is perpendicular to 
ΑΓ. 
 Now let the maximal straight line come from another point namely Ζ,  and 
let the straight line be ΖΗ. Then I say that the angle ΓΖΗ is acute, and that  the 
perpendicular drawn from Η to ΑΓ is such that as the length between its foot 
and Δ is to the length between its  foot and Ζ, so the transverse diameter is to 
he latus rectum. 
 [Proof]. For let ΖΓ be either greater than the half of the latus rectum, or 
smaller or equal to it. But if it were equal to it,  it would be the maximal straight 
line, as we proved in Theorems 16 , 17, and 18 of this Book, and if it were 
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greater than, then again ΖΓ would be the maximal, as is proved in Theorem 19 
of this Book. Therefore ΖΓ is smaller than the half of the latus rectum. 
 Therefore if we make the ratio of a straight line adjoining ΖΔ to the sum 
of ΖΔ and that adjoining straight line equal to the ratio of the transverse diame-
ter to the latus rectum, then that adjoining straight line is less than ΔΓ, 
let it be ΔΚ. Therefore as ΔΚ is to ΖΚ, so transverse diameter is to the latus 
rectum. 
        Then I say that straight line drawn from Κ perpendicular to ΑΓ meets Η. 
 [Proof]. For if it did not meet it, but fell like ΚΘ, then ΘΖ would be maxi-
mal, as is proved in Theorem 20 of this Book. But that is not so, therefore the 
perpendicular drawn from Η meets Κ, and as ΔΚ is to ΚΖ, so the transverse di-
ameter is to the latus rectum. 
 

 [Proposition] 23 
 

 If there is drawn from a point on the minor of two axes of an ellipse one 
of the mentioned maximal straight lines, then that part of it intercepted be-
tween the section and the major axis is the smallest straight line that can be 
drawn [to the section] from the point of its meeting with the major axis 28. 
 Let there be the ellipse ΑΒΓΔ whose major axis ΓΑ and minor axis ΔΒ. 
And let ΚΕ be the maximal straight line drawn from K. 
 I say that ΖΕ is the shortest of the straight lines from Z to meet the sec-
tion. 
 [Proof]. For let from Ε a perpendicular ΕΗ to ΔΒ, and a perpendicular ΕΘ 
to ΑΓ, be drawn. 

Then as ΔΒ is to the latus rectum, so the latus rectum is to ΑΓ, as is 
proved in Theorem 15 of Book I. 
 And as ΔΒ is to [its] latus rectum, so ΛΗ is to ΗΚ. Therefore as the latus 
rectum [of ΑΓ] is to ΑΓ, so ΛΗ is to ΗΚ, as is proved in Theorem 22 of this 
Book. But as ΛΗ is to ΗΚ, so ΘΖ is to ΘΛ. Therefore as ΛΘ is to ΘΖ, so ΓΑ 
is to latus rectum [of ΓΑ]. 
 And ΘΕ is a perpendicular [to ΑΓ], and ΕΖ has been joined, and ΑΓ is the 
major axis. Therefore ΕΖ is the shortest straight line drawn from Ζ to the sec-
tion, has is proved in Theorem 10 of this Book. 

 
[Preposition] 24 

 
 If a point is taken on any conic section whatever,  then only one of the 
minimal straight lines drawn from the axis meets it 29 . 
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 Let the section be, first, a parabola ΑΒ whose axis ΒΓ.  
 Let on thee section the point Α be taken. 
 I say that only one of the minimal straight lines can be drawn from the 
axis to Α. 
 [Proof]. For let if possible, two [minimal] straight lines ΑΓ and ΑΔ.  Let 
from Α a perpendicular  ΑΕ to ΒΓ, be drawn. Then ΕΔ is equal to the half of the 
latus rectum, as is proved in Theorem 13 of this Book. And similarly also ΕΓ is 
equal to the half of the latus rectum,  but that is impossible. Therefore  only 
one of the minimal straight lines can be drawn from the axis to Α. 
 

[Proposition] 25 
 

 Furthermore let the section is the hyperbola or the ellipse ΑΒ whose the 
axis ΒΓ  and the center Η, and let on the section an arbitrary point Α be taken. 
 I say that only one of the minimal straight lines can be drawn from the 
axis to Α30 . 
 [Proof]. For if it is possible to draw more than one minimal straight line let 
two [minimal] straight lines ΑΕ and ΑΔ be drawn, and from Α, a perpendicular 
ΑΖ to ΒΓ , be drawn. 
 Then as ΖΗ is to ΖΕ, so the transverse diameter is to the latus rectum, as 
is proved in Theorems 14 and 15 of this Book. 
 Similarly also as ΖΗ is to ΖΔ , so the transverse diameter is to the latus 
rectum, but that is impossible. Therefore two minimal straight lines cannot be 
drawn from the axis to Α. 
 

[Proposition] 26 
 

 If a point is taken on an ellipse not on the minor axis, then only one of the 
maximal straight lines can be drawn from it to the minor axis 31 . 
 Let there be the ellipse ΑΒΓ whose minor axis ΑΓ and a point Β on the 
section. 
 I say that only one maximal straight line can be drawn from Β to ΑΓ. 
 [Proof]. For let, if possible, two [maximal] straight lines ΒΔ and ΒΕ be 
drawn, and the perpendicular ΒΖ [to ΑΓ] be drawn, and let the center be Η. 
 Then ΒΕ is one of the maximal straight lines drawn from the axis, there-
fore as ΖΗ is to ΖΕ, so the transverse diameter is to the latus rectum, as is 
proved in Theorem 22 of this Book. 
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 Similarly also it will be proved that as ΖΗ is to ΔΖ, so the transverse di-
ameter is to the latus rectum, but that is impossible. Therefore only one maxi-
mal straight line can be drawn from Β to the [minor] axis. 
 

[Proposition] 27 
 

 The straight line drawn from the end of one of the mentioned minimal 
straight lines tangent to the section is perpendicular to minimal of straight line 
32. 
 Let the section be, first, a parabola ΑΒ whose axis ΒΓ. 
 I say that the straight line drawn from the end of a minimal straight line 
tangent to the section ΑΒ is perpendicular to the minimal straight line. 
 [Proof]. If the minimal straight line is a part of ΒΓ, then what we said is  
evidently true]. 
 But if minimal straight line is ΑΓ, we draw Α a straight line tangent to the 
section ΑΒ, namely ΑΔ, that the angle ΔΑΓ is right. 
 We draw the perpendicular ΑΗ. Then ΓΗ is equal to the half of the latus 
rectum, as is proved in Theorem 13 of this Book. 
 Furthermore ΑΔ is tangent to the parabola, and the perpendicular ΑΗ has 
been drawn from Α [to the axis]. Therefore ΔΒ is equal to ΒΗ, as is proved in 
Theorem 35 of Book I. 
 Therefore as ΓΗ is to the latus rectum, so ΒΗ is to ΗΔ, therefore pl.ΓΗΔ is 
equal to the rectangular plane under ΒΗ and the latus rectum which is equal to 
sq.ΑΗ, therefore sq.ΑΗ is equal to pl.ΓΗΔ. 
 And the angle ΑΗΔ is right, therefore the angle ΔΑΓ [also] is right. 
 

[Proposition] 28 
 

 Furthermore let the section be the hyperbola or the ellipse ΑΒ whose axis 
ΒΓ. 
 I say that the straight line drawn from the end of the minimal straight line 
tangent to the section is perpendicular to the minimal straight line 33. 
 [Proof]. If the minimal straight line is a part of ΒΓ, then it is  evident that 
the straight line drawn from Β tangent to the section is perpendicular to the 
minimal straight line because ΕΖ is the axis. 
 But if it is not a part of ΒΓ, let the minimal straight line be ΑΕ, and let the 
tangent be ΑΖ. Then I say that the angle ΖΑΕ is right. 
 Let the perpendicular ΑΗ [to the axis]  be drawn, and let the center be Δ. 
Then since ΑΕ is the minimal straight line, and ΑΗ is a perpendicular, as ΔΗ is to 
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ΗΕ, so the transverse diameter is to the latus rectum, as is proved in Theorems 
14 and 15 of this Book. 
 But as ΔΗ is to ΗΕ, so pl.ΔΗΖ is to pl.ΖΗΕ. Therefore as pl.ΔΗΖ is to 
pl.ΖΗΕ, so the transverse diameter is to the latus rectum. But as the transverse 
diameter is to the latus rectum, so pl.ΔΗΖ is to sq.ΑΗ, as is providing Theorem 
37 of Book 1. Therefore pl.ΖΗΕ is equal to sq.ΑΗ. 
 And ΑΗ is a perpendicular [to the axis]. Therefore the angle ΖΑΕ is right. 
 

[Proposition] 29 
 

 That may be proved in another way, that is as follows : let the conic sec-
tion be ΑΓ and its axis be ΒΔ. Then I say that the straight line drawn from the 
end of the minimal straight line tangent to the section is perpendicular to the 
minimal straight line 34 . 
 Let the minimal straight line be ΑΒ and the tangent ΑΔ. Then I say that 
the angle ΔΑΒ is right. 
 [Proof]. For if that is not so, we draw the perpendicular ΒΕ to ΑΔ. 
Then ΑΒ is greater than ΒΕ. 
 Therefore how much the greater is it than ΒΖ. [But] that is impossible for 
ΑΒ is minimal straight line, therefore the angle ΔΑΒ is so right. 
 

[Proposition] 30 
 

 If a straight line is drawn from the end of one of the maximal straight lines 
drawn in the ellipse whichever one it may be, so as to be tangent to the section, 
then it is a perpendicular to the maximal straight line 35. 
 Let the ellipse be ΑΒΓ whose minor axis ΑΓ, and let there be drawn from a 
point on the axis to the section one of the maximal lines ΟΒ. Let from Β a 
straight line ΔΒ tangent to the section be drawn. 
 I say that the angle ΔΒΟ is right. 
 [Proof]. For let from the center of the section a perpendicular ΕΚ to the 
[minor axis],  be drawn. Then ΕΚ is the half of the major axis, and ΑΓ is the mi-
nor axis. And since ΕΚ has cut one of the maximal straight lines, then the part 
of that straight line which fails between the section and the major axis is one of 
the minimal straight lines, as is proved in Theorem 23 of this Book. 
 Therefore ΒΛ is one of the minimal straight lines, and ΒΔ is tangent,  
therefore ΒΔ is a perpendicular to it, as is proved in three preceding Theorems. 
 

[Proposition] 31 
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 If there is drawn from the end of a minimal straight line that is drawn in 
one of the [conic] sections a straight line at right angles [to  the minimal 
straight line], and that end is one point on the section, then the drawn straight 
line is tangent to the section 36. 
 Let there be the conic section ΑΒ with a minimal straight line ΓΒ. 
 I say that the straight line drawn from Β such that it is a perpendicular 
to ΓΒ is tangent to the section. 
 [Proof]. For let, if it is possible for it not be tangent, let it cut it, as ΕΒΘ. 
Let from a point Ζ outside the section, between it and ΒΘ, the straight line ΖΒ 
be drawn, and from Γ a perpendicular ΓΗΖ to ΒΖ, be drawn. Then the angle ΓΒΖ 
is acute and the angle ΓΖΒ is right.  
 Therefore ΓΖ is smaller than ΓΒ, and ΓΗ is much smaller than ΓΒ. But ΓΒ 
was minimal, that is impossible. 
 Therefore the straight line drawn from Β perpendicular to ΒΓ is tangent to 
the section. 

[Proposition] 32 
 

 If there is a tangent to one of [conic] sections and a perpendicular is 
drawn to that straight line from the point of contact to meet the axis, then 
that drawn straight line is the minimal straight line that reaches that point 
[from the axis] 37. 
 Let there be the conic section ΑΒΓ, and let ΔΕ be a tangent to it.  
Let the point of contact a perpendicular ΒΖ to ΔΕ,  be drawn and continued until 
it reaches the axis ΑΖΗ. 
 I say that ΒΖ is one of the minimal straight lines. 
 [Proof]. For let, if that is not so, the minimal straight line which reaches Β 
[from the axis] be ΒΗ. Then the angle ΔΒΗ is right, as is proved in Theorems 27, 
28, and 29 of this Book. But the angle ΔΒΖ also was right, that is impossible. 
Therefore ΒΖ is one of the minimal straight lines. 
 

[Proposition] 33 
 

 If a perpendicular is drawn to one of the maximum straight lines, from 
that and of it, which is on the section, then it is tangent  to the section  38. 
 Let there be the conic section ΑΒ, and in it one of the maximal straight 
lines ΒΓ. 
 I say that the straight line drawn from Β perpendicular to ΒΓ is a tangent 
to the section. 
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 [Proof]. For let if that is not so, if cut it as ΕΒΔ. Let from Γ a straight line 
ΓΔΑ cutting ΒΔ, be drawn. Then ΔΓ is greater than ΓΒ, and ΑΓ is greater than 
ΔΓ. 
 Therefore is much greater than ΓΒ. But ΓΒ was one of the maximal 
straight lines, and that is impossible. Therefore the straight line drawn from Β 
perpendicular ΓΒ is tangent to the section. 
 

[Proposition] 34 
 

 If a point is taken outside a conic section on a  continued maximal or 
minimal straight line, then the smallest length intercepted between that point 
and the section [on the straight lines  drawn from that point on either side of 
the section but not continued to cut the section at more than one point] is the 
straight line which is the continued maximal or minimal straight line, and  of the 
other straight lines those drawn closer to it are smaller than those drawn farther 
39. 
 Let there be a conic section ΑΒ with a maximal or minimal straight line 
ΒΓ in it. Let it be continued in a straight line, and let on it be taken, after it is 
continued [outside the section] an arbitrary point Δ. Let from Δ to the section 
ΔΑ, ΔΗ, and ΔΕ be drawn, let each of them cut the section in one point only. 
 I say that ΔΒ is the smallest of the straight lines drawn from Δ to the 
section, and that of the other straight lines those of them drawn closer to it 
are smaller than those drawn farther. 
 [Proof]. For let ΒΖ be drawn tangent to the section then the angle ΖΗΔ is 
right because of what was proved in Theorems 27, 28, 29, and 30 of this Book. 
Therefore ΔΖ is greater than ΔΒ and ΔΕ is much greater than ΔΒ. 
 Let ΗΒ and ΗΕ be joined. Then the angle ΔΕΗ is obtuse, and ΔΗ is greater 
than ΔΕ. 
 Similarly also it will be proved that ΔΑ is greater than ΔΗ. 
 And similarly it is possible for us to prove the same concerning the 
straight lines drawn to the other side of ΔΒ.  

 
 [Proposition] 35 

 
 In every conic section, when minimal straight lines are drawn, the angle 
between a straight line drawn farther from the vertex of the section and the 
axis is greater than the angle between the straight line drawn closer [to the ver-
tex] and the axis 40. 
 Let the section be, first the parabola ΑΒΓ whose axis ΓΔ.  
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Let ΔΑ and ΒΕ be two of the minimal straight lines. 
 I say that the angle ΑΔΓ is greater than the angle ΒΕΓ. 
 [Proof]. For let two perpendiculars ΑΖ and ΒΗ [to the axis] be drawn. 
Then ΒΕ is one of the minimal straight lines and [hence] ΕΗ is equal to the half 
of the latus rectum, as is proved in Theorem 13 of this Book. 
 Similarly also it will proved that ΖΔ is equal to the half of the latus rectum. 
Therefore ΕΗ is equal to ΔΖ. 
 But the perpendicular ΑΖ is greater than the perpendicular ΒΗ. Therefore 
the angle ΑΔΖ is greater than the angle ΒΕΗ. 
 

[Proposition] 36 
 

 [Next] let the section [ΑΒ] be the hyperbola or the ellipse whose axis ΛΕ 
and center Δ. Let ΑΕ and ΒΖ be two of the minimal straight lines.  
 Then I say that the angle ΑΕΛ is greater than the angle ΒΖΛ41 . 
 [Proof]. For let two perpendiculars ΒΘ and ΑΗ [to the axis] be drawn , 
and the straight line ΔΚΒ be joined. 
 Then as ΔΗ is to ΗΕ, so the transverse diameter is to the latus rectum, as 
is proved in Theorems 14 and 15 of this Book. 
 Similarly as ΔΘ is to ΖΘ [so the transverse diameter is to the latus rec-
tum]. Therefore as ΔΗ is to ΗΕ, so ΔΘ is to ΘΖ. And permutando as ΔΗ is to ΔΘ, 
so ΕΗ is to ΖΘ. 
 But as ΔΗ is to ΔΘ, so ΚΗ is to ΒΘ, therefore as ΗΕ is to ΖΘ, so ΚΗ is to 
ΒΘ. And the angles ΑΗΕ and ΒΘΖ are right. Therefore the triangles ΚΕΗ and 
ΒΖΘ are similar. Therefore the angle ΑΕΗ is greater than the angle ΒΖΘ. 
 

[Proposition] 37 
 

 If there be a hyperbola, and one of the minimal straight lines is drawn in it 
so as to make an angle with the axis, then that angle is smaller than the angle 
between each of the asymptote to the section and the straight line drawn from 
the vertex of the section  perpendicular to the axis 42. 
 Let the hyperbola be ΑΒ whose axis ΓΔ. Let its asymptotes be ΖΓ and ΓΗ, 
and let the minimal straight line be ΑΔ let through B pass the perpendicular ZBH 
to the axis. 
 I say that the angle ΑΔΓ is smaller than the angle ΓΖΗ. 
 [Proof]. For let the half of the latus rectum be made ΒΘ, so that Θ falls 
between Β and Η or beyond them. Let ΓΑ be joined. 
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 Then as ΓΒ is to ΒΘ, so the transverse diameter is to the latus rectum, 
and as ΓΕ is to ΕΔ, also so the transverse diameter is to the latus rectum, as 
was proved Theorem 14 of this Book. Therefore as ΓΒ is to ΒΘ, so ΓΕ is to ΕΔ. 
 And as ΚΒ is to ΒΓ, so ΑΕ is to ΓΕ. Therefore ex as ΚΒ is to ΒΘ, so ΑΕ is 
to ΕΔ. But the ratio ΚΒ to ΒΘ is smaller than the ratio ΖΒ to ΒΘ, and as ΖΒ is to 
ΒΘ, so ΓΒ is to ΒΖ, as is proved in Theorem 3 of Book II . Therefore the ratio ΑΕ 
to ΕΔ is smaller than the ratio ΓΒ to ΒΖ. And these 
sides and close right angles. Therefore the angle ΓΖΒ is greater than the angle 
ΑΔΓ. 
 

[Proposition] 38  
 

 If there are drawn in one of conic sections two minimal straight lines end-
ing at the axis, then, when they are continued in a straight line, they will meet 
the other part of the section 44. 
 Let there be the conic section ΑΒ whose axis ΓΔ, and let there be in the 
section two  of the minimal straight lines ΔΑ and ΕΒ. 
 I say that ΔΑ and ΕΒ, when continued towards the other side [of the axis] 
will meet each other 43. 
 [Proof]. The angle ΑΔΓ is greater than the angle ΒΕΓ, as is proved in 
Theorems 35 and 36 of this Book. Therefore the sum of  the angles ΑΔΕ and 
ΒΕΔ is greater than two right angles. 
 For that reason two angles adjoining them are less than two right angles. 
 Therefore two minimal straight lines ΑΔ and ΒΕ, when continued towards 
the other side of the section, will meet each other. 
 

[Proposition] 39 
 

 Maximal straight lines drawn in an ellipse to the minor axis cut each other 
in that part [of the ellipse] 44. 
 Let there be the ellipse ΑΓΒ whose minor axis ΑΔ. 
 I say that the maximal straight lines drawn in the ellipse ΑΓΒ cut one an-
other in the half of the section ΑΒΔ. 
 [Proof]. For let if it is possible, they not cut one another, as the maximal 
straight lines ΒΕ and ΓΖ. Let the perpendiculars ΒΗ and ΓΘ be drawn, and let 
the center be Κ. Then as ΚΘ is to ΘΖ, so the transverse diameter is to the latus 
rectum, as is proved in Theorem 22 of this Book.  
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 Similarly as ΚΗ is to ΗΕ also [so the transverse diameter is to the latus 
rectum. Therefore as ΚΗ is to ΗΕ, so ΚΘ is to ΘΖ]. And dividendo as ΚΗ is to 
ΚΕ, so ΚΘ is to ΚΖ, and permutando as ΚΗ is to ΚΘ, so ΚΕ is to ΚΖ. 
 But ΚΖ is smaller than ΚΕ. Therefore ΚΘ is smaller than ΚΗ also, but that 
is impossible. Therefore ΒΕ and ΓΖ meet. 
 

[Proposition] 40 
 

 The point of meeting of the minimal straight lines drawn in an ellipse is 
within the angle between the half of the axis from which the minimal straight 
lines are drawn and the other axis 45. 
 Let there be the ellipse ΑΔΓ whose major axis ΑΓ and minor axis ΒΔ. Let 
ΕΘ and ΖΗ two of the minimal straight lines. 
 I say that ΕΘ and ΖΗ will meet within the angle ΓΒΟ. 
 [Proof]. For let these two straight lines be continued from Η and Θ until 
they meet ΔΒ at Κ and Λ. Then ΕΘ and ΖΗ are minimal straight lines, therefore 
ΕΛ is one of the maximal straight line, as is proved from the reverse of Theorem 
23 of this Book. 
 Similarly also ΖΗ when continued meets ΒΟ as ΖΚ, and [hence] ΖΚ is one 
of the maximal straight lines. 
 But ΕΘ and ΖΗ, when continued, meet on the other side of the [major] 
axis, as is proved in Theorem 38 of this Book. And when ΕΛ and ΖΚ are maximal 
straight lines, then they cut each other on the side [of the minor axis] on which 
they are, as is proved in Theorem 39 of this Book. Therefore, the place of meet-
ing is within the angle between ΓΒ and ΒΟ. 
 

[Proposition] 41 
 

 The minimal straight lines drawn in a parabola or an ellipse to its axis, 
when continued, fall on the other side of the section 46. 
 Now as to the fact that that is the case in the ellipse, that is evident. 
 Therefore let there be the parabola [ΑΒΓ] whose axis ΒΔ, and minimal 
straight line ΑΔ. 
 I say that ΑΔ, when continued, meets the part ΒΓ of the section. 
 [Proof]. The section ΑΒΓ is a parabola, and ΑΔ has been drawn from its 
diameter, therefore ΑΔ, when continued falls on the section ΒΓ, as is proved in 
Theorem 27 of Book 1. 
 

[Proposition] 42 
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 If there is a hyperbola whose transverse diameter is not greater than the 
latus rectum, then none of the minimal straight lines drawn in it meet the other 
side of the section,  but if the transverse diameter is greater than the latus rec-
tum, then some of the minimal straight lines in the section will, when continued 
meet the section on the other side [of the axis] , and some of them will not 
meet it 47. 
 Let there be the hyperbola ΑΒΓ whose axis ΔΕ and center Δ. Let the 
minimal straight line be ΑΕ. 
 [First] let the transverse diameter be not greater than the latus rectum. 
Then I say that ΑΕ will not meet the section when continued. 
 [Proof]. For let the asymptotes be ΔΖ and ΔΗ, and ΖΒ be a perpendicular 
to ΔΕ, and let the half of the latus rectum be ΒΘ. Then, since the transverse di-
ameter is not greater than the latus rectum ΔΒ is not greater than ΒΘ. 
 And as  ΔΒ is to ΒΘ, so sq.ΔΒ is to sq.ΒΖ, as is proved in Theorem 3 of 
Book II. Therefore ΔΒ is not greater than sq.ΒΖ, and ΔΒ is not greater than ΒΖ. 
Therefore the angle ΒΖΔ is not greater than the angle ΖΔΒ. But the angle ΒΖΔ is 
greater than the angle ΑΕΒ, as is proved in Theorem 37 of this Book. 
 Therefore the angle ΖΑΒ is greater than the angle ΑΕΒ. And the angle ΖΔΒ 
is equal to the angle ΒΔΗ.  Therefore the angle ΒΔΗ is greater than the angle 
ΑΕΒ. And the angle adjacent to the angle ΑΕΒ is made common [to both sides], 
this angle together with the angle ΑΕΒ is equal to two right angles, and [hence] 
the angle ΕΔΗ together with the angle adjacent to the angle ΑΕΒ is greater than 
two right angles. Therefore ΑΕ and ΔΗ, when continued on the side ΕΗ, will not 
meet each other. Therefore ΑΕ will not meet side ΒΓ of the section for if it met 
it, ΑΕ would meet ΔΗ, as is proved in Theorem 8 of Book II . 

[Proposition] 43 
 
 Next let the transverse diameter be longer than the latus rectum, then I 
say that some of the minimal straight lines which occur in the section ΑΒΓ , 
when continued will meet the section on the other side [of the axis] and some 
of them will not meet it 48. 
 [Poof]. For let the asymptotes ΖΔ and ΔΗ be drawn,  and the transverse 
diameter  be longer  than the latus rectum. Then ΔΒ is greater than ΒΘ [equal 
to the half of the latus rectum, and [hence] as the ratio ΖΒ to ΒΘ is greater 
than ΖΒ to ΒΔ. 
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 Therefore let as ΚΒ be to ΒΘ, so ΖΒ be to ΒΔ,  and let ΔΚ be  joined and 
continued, then it will meet the section, as is proved in Theorem 2 of Book II .  
Let it meet it at Α . Let from Α the perpendicular ΑΛ to ΔΕ be drawn, 
let as ΔΛ be to ΛΕ, so ΔΒ be to ΒΘ, and ΛΕ be joined . Then as ΔΒ is to ΒΘ , so 
ΔΛ is to ΛΕ, that is so  the transverse diameter is to the latus rectum. And the 
perpendicular ΑΛ has been from Λ,  and  ΑΕ is joined. Therefore  ΑΕ is one of 
the minimal straight lines, as is proved in Theorem 9 of this Book. 
 Furthermore as ΒΚ is to ΔΒ, so ΑΛ is to ΛΔ, and as ΔΒ is to ΒΘ, so ΔΛ is 
to ΛΕ. Therefore ex as ΑΛ is to ΛΕ, so ΒΚ is to ΒΘ. 
 But as ΒΚ is to ΒΘ, so ΖΒ is to ΒΔ. Therefore as ΑΛ is to ΛΕ, so ΒΖ is to 
ΒΔ. And the angles ΖΒΔ and ΑΛΕ are equal since  they are right, therefore the 
triangles ΖΒΔ and ΑΛΕ are similar, therefore the angle ΖΔΒ is equal to  the angle 
ΑΕΛ, and [the angle ΖΔΒ] is equal to the angle ΒΔΗ. Therefore the angle ΑΕΒ is 
equal to the angle ΒΔΗ. Therefore ΔΗ and ΛΕ are parallel, and, when continued, 
will not cut each other. 
 Therefore since they do not cut each other, ΑΕ will not meet the section 
anywhere but at Α, even if it is continued  in a straight line for if it did meet it, 
it would meet ΔΗ and ΔΖ, as is proved in Theorem 8 of Book II . 
 But ΑΕ has been shown to be parallel to ΔΗ, which is impossible. There-
fore ΑΕ does not meet the section ΑΒΓ at a point other than Α. 
 And as for the minimal straight lines drawn between Ε and Η, the angles 
which they form with ΒΕ are smaller than the angle ΑΕΒ, as is proved in Theo-
rem 36 of this Book. 
 But the angle ΑΕΒ is equal to the angle ΒΔΗ. Therefore the angles which 
the minimal straight lines drawn between Β and Ε form [with the axis] are 
smaller than the angle ΒΔΗ, therefore when they are continued, they will not 
meet ΔΗ or the section ΒΓ [for the reason mentioned above]. 
 As for the other minimal straight lines, since they form with the axis the 
angles greater than the angle ΑΕΒ, they will meet ΔΗ, and hence will meet the 
section ΒΓ. 
 

[Proposition] 44 
 

 If two of the minimal straight lines are drawn from the axis of one of the 
conic sections, and continued until they meet, and another straight line is drawn 
from their point of meeting cutting the axis and ending at the section, then the 
part of it falling between the section and the axis is not one of the minimal 
straight lines, and if the  drawn straight line is not between two minimal straight 
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lines, and a minimal straight line is drawn from the point at which it reaches the 
section, then [that minimal straight line] cuts off from the axis adjacent to the 
vertex of the section a segment greater than that cut off by the drawn straight 
line, but if the drawn straight line is between two minimal straight lines, then 
the minimal straight line drawn from the point at it reaches [the section] cuts 
off from the axis adjacent to the vertex of the section a segment smaller than 
the segment cut off [by the drawn straight line], and in the case of the ellipse 
the above said holds when two minimal straight lines and  the drawn straight 
line all cut one and the same half of two halves of the major axis 49. 
 First let the section be the parabola ΑΒΓ whose axis ΔΗ. Let two minimal 
straight lines that are in it be ΒΖ and ΓΕ, and let them meet at Ο. 
Let there be drawn from Ο, first, a straight line ΟΛΚ outside ΟΓ and ΟΒ. 
 I say that ΛΚ is not one of minimal straight lines, and that the minimal 
straight line which is drawn Κ cuts of off from the axis next to the vertex of the 
section, which is Δ, a straight line longer than ΔΛ. 
 [Proof]. For let the perpendiculars ΟΗ, ΒΠ, ΓΝ, and ΚΜ be drawn. Let the 
half of the latus rectum be ΥΗ. Then ΒΖ is one of the minimal straight lines, and 
be ΒΠ is a perpendicular, therefore ΗΖ is equal to the half of the latus rectum, 
as is proved in Theorem 13 of this Book. Therefore ΠΖ is equal to ΘΗ, and ΠΘ is 
equal to ΖΗ, and as ΗΘ is to ΘΠ, so ΠΖ is to ΖΗ. 
         But as ΠΖ is to ΖΗ, so ΠΒ is to ΟΗ. Therefore pl.ΟΗΘ is equal to pl.ΒΠΘ. 
 And similarly also we will prove that pl.ΓΝΘ is equal to pl.ΟΗΘ. Therefore 
pl.ΒΠΘ is equal to pl.ΓΝΘ. And therefore as ΒΠ is to ΓΝ, so ΝΘ is to ΘΠ. So we 
join ΒΓ and continue it until it meets ΔΗ at Χ, and draw the perpendicular ΚΜ 
and continue it to [meet ΒΧ at] ο.      
 Then as ΒΠ is to ΓΝ, so ΠΧ is to ΧΝ, therefore as ΠΧ is to ΧΝ, so ΝΘ is 
to ΘΠ, and ΝΧ is to ΠΘ. Therefore ΧΜ is smaller than ΠΘ, and the ratio ΠΜ to 
ΜΧ is greater than the ratio ΠΜ to ΠΘ. And componendo the ratio ΠΧ to ΧΜ 
[equal to the ratio ΠΒ to Μο] is greater than the ratio ΜΘ to ΘΠ. Therefore 
pl.ΒΠΘ is greater than pl.οΜΘ. 
 Therefore pl.ΒΠΘ is much greater than pl.ΚΜΘ. 
 But we have [already] proved that pl.ΒΠΘ is equal to pl.ΟΗΘ. Therefore 
pl.ΟΗΘ is greater than pl.ΚΜΘ, therefore the ratio ΟΗ to ΚΜ [equal to the ratio 
ΗΛ to ΛΜ] is greater than the ratio ΜΘ  to ΘΗ, and ΗΘ is greater than ΜΛ. 
 But ΗΘ is equal to the half of the latus rectum. Therefore ΜΛ is smaller 
than the half of the latus rectum, and [hence] the minimal straight line drawn 
from Κ cuts off from the axis adjacent to Μ a straight line greater than ΛΜ. 
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Therefore it cuts off from the axis adjacent to Δ a straight line greater than ΛΔ. 
So ΚΛ is not one of the minimal straight lines, as is proved in Theorem 24 
of this Book. 
 Furthermore we draw on the other side if ΒΟ and ΓΟ the straight line ΟΑ 
[cutting ΗΔ at Φ], then I say that ΑΦ is not one of the minimal straight lines, 
 and that the minimal straight line drawn from Α cuts off from the axis a 
segment greater than ΔΦ. 
 [Proof]. For let ΑΡ be a perpendicular to ΔΗ. Now it has been proved that 
ΠΘ is equal to ΧΝ. Therefore ΧΡ is greater than ΠΘ,  and the ratio ΡΠ to ΧΡ is 
smaller than the ratio ΡΠ to ΠΘ. And divedendo  the ratio ΡΠ to ΠΧ is smaller 
than the ratio ΡΠ to ΡΘ. And componendo the ratio ΡΧ to ΧΠ is smaller than the 
ratio ΠΘ to ΘΡ, and the ratio ΡΨ to ΠΒ is smaller than the ratio ΠΘ to ΘΡ. 
Therefore pl.ΨΡΘ is smaller than pl.ΒΠΘ. Therefore pl.ΑΡΘ is much smaller than 
pl.ΒΠΘ. 
 But pl.ΒΠΘ is equal to pl.ΟΗΘ. Therefore pl.ΑΡΘ is smaller than pl.ΟΗΘ,  
and the ratio ΑΡ to ΟΗ [equal to the ratio ΡΦ to ΦΗ] is smaller than the ratio 
ΗΘ to ΘΡ. Therefore ΘΗ is greater than ΡΦ. 
 But ΘΗ is equal to the half of the latus rectum. Therefore ΡΦ is smaller 
than the half of the latus rectum, and the minimal straight line drawn from Α 
cuts off a segment greater than ΡΦ. Therefore the segment cut off [by the 
minimal straight line from Α] adjacent to Δ, which is the vertex of the section , 
is greater than ΔΦ, which is cut off by ΑΦ. Therefore ΑΦ is not one of the mini-
mal straight lines, as is proved in Theorem 24 of this Book. 
 Furthermore let the drawn straight line ΟΣ fall between ΟΒ and ΟΓ.   Then 
I say that ΣΥ is not one of the minimal straight lines, and that the minimal 
straight line drawn from Σ cuts off from the axis adjacent to Δ a straight line 
smaller than ΔΥ. 
 [Proof]. For let the perpendicular ΣΤ be drawn. Then it has been proved 
that ΠΘ is equal to ΧΝ. Therefore ΤΧ is greater than ΠΘ, and the ratio ΤΠ to ΤΧ 
is smaller than the ratio ΤΠ to ΠΘ. And componendo the ratio ΠΧ to ΧΤ is 
smaller than the ratio ΤΘ to ΘΠ. 
 But as ΠΧ is to ΧΤ, so ΒΠ is to ΤΞ. Therefore the ratio ΒΠ to ΤΞ is smaller 
than ratio ΤΘ to ΘΠ, and the ratio ΒΠ to ΠΘ is smaller than the ratio ΞΤ to ΤΘ. 
Therefore the ratio ΒΠ to ΠΘ is smaller than the ratio ΣΤ to ΤΘ. 
 But pl.ΟΗΘ is equal to pl.ΒΠΘ. Therefore pl.ΟΗΘ is smaller than pl.ΣΤΘ. 
Therefore  the ratio ΟΗ to ΣΤ is smaller than the ratio ΤΘ to ΘΗ. 
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 But as ΟΗ is to ΣΤ, so ΗΥ is to ΥΤ, and the ratio ΗΥ to ΥΤ is smaller than 
the ratio ΤΘ to ΘΗ. Therefore ΗΘ is smaller than ΥΤ. And HΘ is equal to the half 
of the latus rectum. 
 Therefore the minimal straight line drawn from Σ cuts off next to Τ a 
straight line smaller than ΤΥ, and therefore it cuts next to the vertex of the 
section [a segment] smaller than ΔΥ. 
 Therefore ΣΥ is not the minimal straight line, and the minimal straight line 
cuts off next to the vertex of the section a segment smaller than ΔΥ. 
 

[Proposition] 45 
 

 Furthermore let the section be the hyperbola or the ellipse ΑΒΓΔ whose 
axis ΜΝΛ and center Ν, and let there be drawn in the section two  minimal 
straight lines ΒΕ and ΓΖ, and let them meet at Θ, and let ΘΛΚ be drawn from Θ 
to the section. Then I say that ΚΛ, which is between the axis and the section, is 
not one of the minimal straight lines, but that the minimal straight line drawn 
from Κ cuts off the axis next to Δ a segment longer than 
ΔΑ 50 . 
 [Proof]. For let ΘΜ be the perpendicular from Θ to the axis, and there be 
a straight line through Ν  parallel to ΜΘ, namely ΝΞ, and pass and through Θ a 
straight line parallel to ΜΝ, namely ΘΞ , and let ΝΞ be continued until it meets 
ΚΘ and ΒΘ, let it meets them at b and q [respectively]. Let each of the ratios 
ΞΠ to ΠΝ and ΝΟ to ΟΜ be equal to the ratio of the transverse diameter to the 
latus rectum. 
 Let ΟΣ, ΒΩ, ΓΗ, and ΚΦ are drawn as perpendiculars to the axis, and let 
ΒΓ be joined and continued in a straight line, and let through Π pass a   straight 
line ΠΡ parallel to ΔΝ, and let it be continued to [meet the continued ΒΓ at] Υ. 
 Then since ΒΕ is one of minimal straight lines, and ΒΩ is a perpendicular, 
as ΝΩ is to ΩΕ, so the transverse diameter is to the latus rectum, as is proved 
in Theorems 9 and 10 of this Book. Therefore as ΝΟ is to ΟΜ, so ΝΩ is to ΩΕ. 
And componendo for the hyperbola and convertendo for the ellipse as ΟΝ is to 
ΝΜ, so ΩΝ is to ΝΕ. 
       And when subtract two lesser from two greater, we set as ΜΕ is to ΟΩ,                  
so ΜΝ is to ΝΟ. But ΩΟ is to Τσ, therefore as ΕΜ is to Τσ so ΜΝ is to ΝΟ. 
 And since the ratio ΞΠ to ΠΝ also is equal to the ratio of the transverse 
diameter, as ΞΠ is to ΠΝ, so ΝΩ is to ΩΕ. 
 And componendo in the case of the hyperbola and dividendo in the case 
of the ellipse as ΞΝ is to ΝΠ, so ΝΕ is to ΕΩ. 
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 But as ΝΕ is to ΕΩ, so ΝΘ is to ΒΩ because ΣΕ of the similarity of the tri-
angles. 
 And adding in the case of the hyperbola and subtracting the lesser from 
the greater in the case of the ellipse as ΕΘ is to Βσ, so ΝΕ is to ΕΩ, that is the 
ratio ΞΝ to ΝΠ. Therefore as ΞΘ is to Βσ so ΞΝ is to ΝΠ. 
 Furthermore the ratio of the quadrangle ΝΘ to the quadrangle ΝΤ is com-
pounded of [the ratios] ΞΝ to ΝΠ and ΜΝ to ΝΟ. 
 But we have [already] proved that as ΞΝ is to ΝΠ, so Ξθ is to Βσ, and  we 
have [already] proved that as ΜΝ is to ΝΟ, so ΕΜ is to σΤ. Therefore the ratio 
of the quadrangle ΝΘ to the quadrangle ΝΤ is compounded of [the ratios] Ξθ to 
Βσ and ΕΜ to σΤ. But the quadrangle ΝΘ is equal to pl.ΞΘ,ΕΜ , because as Ξθ is 
to ΞΘ so ΘΜ is to ΜΕ. Therefore the quadrangle ΝΤ is equal to pl.ΒσΤ. 
 Similarly also it will be proved that the quadrangle ΝΤ is equal to pl.ΓδΤ. 
Therefore pl.ΒσΤ is equal to pl.ΓδΤ, and as Βσ is to Γδ, so δΤ is to Τσ. But as Bs 
is to Γδ, so σΥ is to Υδ, and as σΥ is to Υδ, so δΤ is to Τσ. And dividendo as σδ is 
to δΥ, so σδ is to σΤ. Therefore δΥ is equal to σΤ, and σΤ is greater 
than Υγ. Therefore the ratio γσ to γΥ is greater than the ratio γσ to σΤ, and 
componendo the ratio σΥ to Υγ is greater than the ratio γΤ to Τσ. 
 But as σΥ is to Υγ, so Βσ is to εγ. Therefore the ratio Βσ to εγ is greater 
than the ratio γΤ to Τσ, and pl.ΒσΤ is greater than pl.εγΤ. Therefore pl.ΒσΤ is 
much greater than pl.ΚγΤ. 
 But pl.ΒσΤ was equal to the quadrangle ΝΤ. Therefore the quadrangle ΝΤ 
is greater than pl.ΚγΤ. And the quadrangle ΝΤ is equal to the quadrangle 
ΡΣ because as ΝΟ is to ΟΜ, so ΘΡ is to ΡΜ. Therefore the quadrangle ΡΣ is 
greater than pl.ΚγΤ. But the quadrangle ΡΣ is equal to pl.ΘΡΤ, therefore  
pl.ΘΡΤ is greater than pl.ΚγΤ. Therefore the ratio ΘΡ to Κγ is greater than the 
ratio γΤ to ΡΤ. But as ΘΡ is to Κγ, so Ρζ is to ζγ. Therefore the ratio Ρζ to ζγ is 
greater than the ratio γΤ to ΡΤ. And componendo the ratio Ργ to γζis greater 
than the ratio γΡ to ΡΤ. Therefore ΡΤ is greater than γζ, and the ratio ΞΘ to ΡΤ is 
smaller than the ratio ΞΘ to γζ. 
 But as ΞΘ is to γζ, so Ξβ is to Κγ because of the similarity of the triangles. 
Therefore the ratio ΞΘ to ΡΤ is smaller than the ratio Ξβ to Κγ and 
ΞΘ is equal to ΜΝ, and ΡΤ is equal to ΜΟ. Therefore the ratio ΜΝ to ΜΟ is 
smaller than the ratio Ξβ to Κγ. But as ΜΝ is to ΜΟ, so ΞΝ is to ΝΠ because 
each of these two ratios ΝΟ to ΟΜ and ΞΠ to ΠΝ is equal to the ratio of the 
transverse diameter to the latus rectum. Therefore the ratio ΞΝ to ΝΠ is smaller 
than the ratio Ξβ to Κγ. And subtracting two lesser from two greater in the case 
of the hyperbola and adding in the case of the ellipse the ratio Νβ 
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to ΚΦ is greater than the ratio ΞΝ to ΝΠ because ΝΠ is equal to Φγ . 
 But as Νβ is to ΚΦ, so ΝΛ is to ΑΦ because of the similarity of the 
triangles. Therefore the ratio ΝΛ to ΛΦ is greater than the ratio ΞΝ to ΝΠ. 
 And dividendo in the case of the hyperbola and componendo in the case 
of the ellipse the ratio ΝΦ to ΦΛ is greater than the ratio ΞΠ to ΠΝ. 
 But the ratio ΞΠ to ΠΝ is equal to the ratio on the transverse diameter 
to the latus rectum. Therefore the ratio ΝΦ to ΦΛ is greater than the ratio of 
the transverse diameter to the latus rectum. 
 Therefore if we make the ratio of ΝΦ to another straight line equal to  the 
ratio of the transverse diameter to the latus rectum,  that  other straight line 
will be longer than ΦΛ. 
 Therefore the minimal straight line drawn from Κ cuts off from the axis  
adjoining Δ a straight line longer than ΔΛ, because of what is proved in Theo-
rems 9 and 10 of this Book, and [hence] ΚΛ is not one of minimal straight lines, 
because of what is proved in Theorem 25 of this Book. 
 Furthermore let ΘηΑ be drawn. Then I say that Αη is not one of minimal  
straight lines, and that the minimal straight line drawn from Α cuts off from the 
axis a segment longer  than Δη. 
 [Proof]. For let to the axis the perpendicular ΑϘ be drawn and continued 
to [meet continued ΓΒ at] Γ. Then since Υδ is equal to σΤ, Υδ is greater than  ΤΙ 
, and the ratio δΙ to ΙΤ is greater the ratio δΙ to Υδ. And componendo the ratio 
δΤ to ΤΙ is greater than the ratio ΙΥ to Υδ. But as ΙΥ is to Υδ, so ΓΙ is to Γδ. 
Therefore the ratio  δΤ to ΤΙ is greater than the ratio ΓΙ 
to Γδ. Therefore the ratio δΤ to ΤΙ is much greater than the ratio ΑΙ to Γδ.  
Therefore pl.ΓδΤ is greater than  pl.ΑΙΤ. 
 But we have shown that pl.ΓδΤ is equal to the quadrangle ΠΟ, therefore 
the quadrangle ΠΟ is greater than pl.ΑΙΤ. 
 But the quadrangle ΠΟ is equal to the quadrangle ΡΣ because the ratio ΝΟ 
to ΟΜ equal to the ratio ΠΤ to ΤΡ is equal also to the ratio ΞΠ to ΠΝ which is 
equal to the ratio ΣΤ to ΤΟ. Therefore the quadrangle ΡΣ is greater than 
pl.ΑΙΤ . 
 But the quadrangle ΡΣ is pl.ΘΡΤ. Therefore pl.ΘΡΤ is greater than pl.ΑΙΤ, 
therefore the ratio ΘΡ to ΑΙ  is greater than the ratio ΤΙ to ΡΤ. But as ΘΡ is to 
ΑΙ, so Ρκ is to κΙ. Therefore the ratio Ρκ to κΙ is greater than the ratio ΤΙ to ΡΤ. 
 And componendo the ratio ΙΡ to Ρκ is smaller than the ratio ΙΡ to ΙΤ. 
Therefore Ρκ is greater than  ΤΙ . 
 Let Τκ be common, then ΡΤ is greater than Ικ. Therefore the ratio ΞΘ to 
ΡΤ is smaller than the ratio ΞΘ to Ικ. 
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 But as ΞΘ is to Ικ, so Ξα is to ΑΙ. Therefore the ratio Ξα to ΑΙ is greater 
than ΞΘ to ΡΤ.  
 But as for ΞΘ, that is equal to ΝΜ, and as for ΡΤ, that is equal to ΜΟ. 
Therefore the ratio Ξα to ΑΙ is greater than the ratio ΝΜ is to ΜΟ. But as ΝΜ is 
to ΜΟ, so ΞΝ is to ΝΠ, therefore the ratio Ξα to ΑΙ is greater than the ratio ΞΝ 
to ΝΠ. 
 So when we subtract two smaller from two greater in the case of the hy-
perbola, and add [them] in the case on the ellipse, the ratio αΝ to Αο is greater 
than the ratio ΞΝ to ΝΠ. But  as αΝ is to ΑϘ, so Νη is to ηϘ. Therefore the ratio 
Νη to ηϘ is greater than the ratio ΞΝ to ΝΠ. 
 And dividendo in the case of the hyperbola and componendo in the case 
of the ellipse, the ratio Νο two οη is greater than the ratio ΞΠ to ΠΝ. 
 But as ΞΠ is to ΠΝ, so transverse diameter is to the latus rectum. And we 
make the ratio of Νο to another straight line equal to the ratio of the transverse 
diameter to the latus rectum, that straight line is greater than οη. Therefore the 
minimal straight line drawn from Α cuts off from the axis a segment longer than 
Δη, because of what is proved in Theorems 9 and 10 of this Book. And Αη is not 
one of minimal straight line because of what is proved in Theorem 25 of this 
Book. 
 Furthermore let the straight line �ΨΘ between two minimal straight lines 
ΒΕ and ΓΖ, then  I say that �Ψ is not one of minimal straight lines, and that the 
minimal straight line drawn from � cuts off from the axis a segment smaller 
than ΔΨ. 
 [Proof]. For let �µ as a perpendicular to the axis be drawn. Then since we 
have proved that Υδ is equal to σΤ, Υδ is smaller than ξΤ, and  the ratio ξδ to δΥ 
is greater than the ratio δξ to ξΤ. And componendo the ratio ξΥ to Υδ is greater 
than the ratio δΤ to Τξ. But as ξΥ is to Υδ, so νξ is to Γδ. Therefore the ratio νξ 
to Γδ is greater than the ratio δΤ to Τξ, and pl.νξΤ is greater than pl.ΓδΤ. 
 But �ξ  greater than νξ. Therefore pl.�ξΤ is much greater than pl.ΓδΤ. 
 And we have proved that pl.ΓδΤ is equal to the quadrangle ΝΤ, and that 
the quadrangle ΝΤ is equal to the quadrangle ΡΣ. Therefore pl.�ξΤ is greater 
than the quadrangle ΡΣ, therefore pl.�ξΤ is greater than the quadrangle ΡΣ. 
But the quadrangle ΡΣ is equal to pl.ΘΡΤ, therefore pl.�ξΤ is greater than 
pl.ΘΡΤ, and the ratio �ξ to ΘΡ is greaten than the ratio ΡΤ to Τξ. 
 But as �ξ  is to ΘΡ, so ξιι is to ιιΡ, therefore the ratio ξιι to ιιΡ is 
greater than the ratio ΡΤ to Τξ. And componendo the ratio ξΡ to ΡΤ is greater 
than the ratio ξΡ to ξιι ,therefore ΡΤ is smaller than ξιι and the ratio ΞΘ to ΡΤ is 
greater than the ratio ΞΘ to ξιι. 
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 But as ΞΘ is to ξιι , so Ξο is to �ξ because of the similarity of the  
triangles.  Therefore the ratio ΞΘ to ΡΤ is greater than the ratio Ξο to �ξ . 
 But ΞΘ is equal to ΝΜ and ΡΤ is equal to ΜΟ. Therefore the ratio ΝΜ to 
ΜΟ is greater than the ratio Ξο to �ξ . But as ΝΜ  is to ΜΟ, so ΞΝ is to ΠΝ. 
 Therefore the ratio ΞΝ to ΠΝ is greater than the ratio Ξο to �ξ . 
 And when we subtract two  lesser from two greater in the case of the 
hyperbola, and add [them] in the case of the ellipse, the ratio ΞΝ to ΠΝ is 
greater than the ratio οΝ to �µ . 
 But as  οΝ is to �µ , so ΝΨ is to Ψµ because of the similarity of the trian-
gles. Therefore the ratio ΞΝ to ΝΠ is greater than the ratio ΝΨ to Ψµ . 
 And dividendo in the case of the hyperbola and componendo in the case 
of the ellipse, the ratio ΞΠ to ΠΝ is greater than the ratio Νµ to µΨ . 
 But as ΞΠ is to ΠΝ, so the transverse diameter  is to the latus rectum. 
Therefore the ratio of the transverse diameter to the latus rectum is greater 
than the ratio Νµ to µΨ . 
 And if we make the ratio of Nm to another straight line equal to the ratio 
of the transverse diameter to the latus rectum, that straight line is smaller than 
µΨ.  
 Therefore the minimal straight line drawn from � cuts off from the axis a 
segment shorten than ΨΔ,  as is proved in Theorems 9 and 10 of this Book. 
Therefore  �Ψ  is not one of minimal straight lines because of what is proved in 
Theorem 25 of this Book. 
 

[Proposition] 46 
 

 If there are drawn in one of quadrants of an ellipse two minimal straight 
lines to major axis, one of which passes through the center, and they are con-
tinued until they meet, then no [other] straight line can be drawn from the 
point where they meet to that quadrant of the section such that part of it in-
tercepted between the axis and the section is one of minimal straight lines, and 
if straight lines are drawn from the point of meeting of two straight lines to the 
section, then the minimal straight lines drawn from the ends of those [straight 
lines] to the axis cut off from the axis adjacent to the vertex of the section a 
segment greater than the segment cut off by the straight lines themselves 51. 
 Let there be the ellipse ΑΒΓ whose major axis ΔΕ and center Ζ. Let from 
the center the perpendicular ΖΑ to the axis be drawn and continued. Let ΒΗ be 
one of minimal straight lines, and let it meet ΖΑ at Κ. Let [an arbitrary] straight 
line ΚΘΓ be drawn. 
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 I say that ΓΘ is not one of minimal straight lines, and that the minimal 
straight line drawn from Γ to ΔΕ cuts off a segment greater than ΔΘ. 
 [Proof]. As for [the statement] that ΓΘ is not one of minimal straight 
lines, that is evident because ΒΗ is one of minimal straight lines, and the point 
of meeting of the minimal straight lines [falls] within the angle ΔΖΚ, as is proved 
in Theorem 40 of this Book. 
 And ΒΗ meets ΓΘ only at Κ, therefore ΓΘ is not one of minimal straight 
lines. 
 As for [the statement] that the minimal straight line drawn from Γ meets 
ΔΕ and cuts off from it a segment greater than ΔΘ,  that will be proved from 
the fact that the minimal straight line drawn from Γ meets ΒΗ [being a minimal 
straight line] within the angle  ΗΖΚ, as is proved in Theorem 40 of this Book. 
 Therefore it is evident that its cuts off from the axis a segment greater 
than ΔΘ. 
 

[Proposition] 47 
 

 When minimal straight lines are drawn in a segment of an ellipse and are 
cut off by the major axis, no four of them meet at a single point 52. 
 Let there be the ellipse ΑΒΓΔ whose major axis ΔΑ.  
 I say that if there are drawn from the axis ΔΑ to the section ΑΒΓΔ four 
minimal straight lines, they do not [all] meet at a single point. 
 [Proof]. For let, if possible there be drawn [minimal] straight lines ΚΓ, ΛΕ, 
ΜΖ, and ΘΒ meeting at Η. Then either one of these straight lines is perpendicu-
lar to ΑΔ or there is no perpendicular to ΑΔ among them. 
 First let one of them be perpendicular  ΒΘ to it. Then since ΒΘ is one of 
the minimal straight lines and is perpendicular to ΑΔ, then Θ is the center, as is 
proved in Theorem 15 of this Book. And since one of minimal straight lines,  ΒΘ 
has been drawn from the center, and ΚΓ is also one of minimal straight lines, 
and these two straight lines have met at Η, and ΗΕ has been drawn from Η, then 
ΕΛ is not one of minimal straight lines, has it proved in Theorem 46 of this 
Book. But it was a minimal straight line, which is impossible. 
 Therefore let none of ΒΘ, ΚΓ, ΛΕ, and ΜΖ be a perpendicular to the axis 
ΑΔ, and let the center be Ν. Then if Ν is between ΒΘ and ΓΚ, then three minimal 
straight lines have been drawn from one of two halves of the axis, so 
as to meet at a single point, but it is impossible, because of what is proved  in 
Theorem 45 of this Book. But if Ν is between ΓΚ and ΕΛ, then we draw from it a 



216 

perpendicular ΝΡ to ΑΔ, then the point of meeting of two straight lines ΕΛ and 
ΖΜ occurs within the angle ΔΝΡ, as is proved in Theorem 
40 in this Book. 
 And similarly also two straight lines ΒΘ and ΗΚ must necessarily meet 
within the angle ΑΝΡ. But the point of meeting of all [four] of them is Η, which 
is impossible. 
 Therefore four  drawn straight lines do not meet at a single point. 
 

[Proposition] 48 
 

 When maximal straight lines are drawn in one of the quadrants of an el-
lipse, no three of them meet at a single point 53. 
 Let there be the ellipse ΑΒΓ whose minor axis ΑΓ and major axis ΒΔ. 
 I say that no three of maximal straight lines drawn in the section ΑΒΓ 
from one of quadrants meet at a single point. 
 [Proof]. For let, if it is possible, let there be drawn the [maximal] straight 
lines ΕΛ, ΖΚ, and ΗΘ, and let them meet at a single point Μ. 
Then since ΕΛ, ΖΚ, and ΗΘ are maximal, and ΕΝ, ΖΗ, and ΟΗ are minimal 
straight lines, as is proved in Theorem 23 of this Book.  
 So there have fallen in one of quadrants of this section three minimal 
straight lines so as to meet at a single point, that is impossible of what is 
proved in Theorems 45 and 46 of this Book. Therefore it is not the case that 
three maximal straight lines drawn from one of quadrants of the section ΑΒΓ 
meet at a single point 54 . 
 

[Proposition] 49 
 

 If there is a conic section, and there is drawn from its axis a perpendicular 
to the axis such that that perpendicular cuts off from the axis on the side adja-
cent to the vertex of the section the segment no greater than the half of the 
latus rectum 55 ,  and a point is taken on that perpendicular and any straight 
line is drawn from it to the other part of the section between the perpendicular 
and the vertex of the section, then the minimal straight line drawn from the  ex-
tremity of the straight line is not a part of that straight line, but it cuts off from 
the axis on the side of the vertex of the section a segment greater than that 
cut off by the drawn straight line. 
 In the case of the ellipse it is necessary that it be the major axis on which 
the perpendicular falls, and that the drawn  straight line  cut that the half of the 
axis on which the perpendicular falls 56. 
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 First let the section be the parabola ΑΒ whose axis ΒΓ, and the perpen-
dicular ΔΕ. Let the segment cut from the axis by that perpendicular  ΕΒ,  be not 
greater than the half of the latus rectum. We take on ΔΕ an arbitrary point Δ, 
and draw from it the straight line ΔΘΑ. 
 I say that ΑΘ is not one of minimal straight lines. 
 [Proof]. For let the perpendicular ΑΗ be drawn. Now ΕΒ is not greater 
than  the half of the latus rectum. Therefore ΕΗ is smaller  than the half of the 
latus rectum. Let the segment equal to the half of the latus rectum be ΗΓ, and 
ΑΓ be joined. Then ΑΓ is a minimal straight line, as is proved in Theorem 8 of 
this Book. 
 And ΑΘ is not a minimal straight line, as is proved in Theorem 24 of this 
Book. 
 Rather the minimal straight line drawn from Α cuts off from the axis a 
segment greater than  ΒΕ and falls on the side [of the perpendicular ΔΕ] oppo-
site to the vertex of the section.  
 

[Proposition] 50 
 

 Furthermore let the section be the hyperbola or the ellipse ΑΒ 57  whose 
axis ΒΓ and center Γ, and let the perpendicular ΔΕ to the axis be drawn, and let 
ΒΕ be not greater than the half of the latus rectum, and let Δ be taken on ΔΕ 
and from it the straight line ΔΖΑ [to meet the section at Α] be drawn, then I say 
that ΑΖ is not of minimal straight lines, and that the minimal straight line drawn 
from Α cuts off from the axis a segment longer than ΒΖ 57. 

[Proof]. For let the perpendicular ΑΗ [to the axis] be drawn. Then ΒΕ is 
not greater of the half of the latus rectum, and ΓΒ is the half of the transverse 
diameter. Therefore the ratio of the transverse diameter to the latus rectum is 
not greater than the ratio ΓΒ to ΒΕ. 
 And the ratio ΓΗ to ΗΕ is greater than the ratio ΓΒ to ΒΕ. Therefore the 
ratio ΓΗ to ΗΕ is greater than the ratio of the transverse diameter to the latus 
rectum. 
 So we make the ratio ΓΗ to ΗΘ equal to the ratio of the  transverse di-
ameter to the latus rectum. Then ΑΘ  is one of minimal straight lines, as is 
proved in Theorems 9 and 10 of this Book. Therefore ΑΖ is not one of minimal 
straight lines, as is proved in Theorem 25 of this Book. 
 

[Proposition] 51 
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 But if the mentioned perpendicular cuts off from the axis a segment 
greater than the half of the latus rectum, then I say that it is possible to gener-
ate a straight line such that when the drawn perpendicular is measured  against 
it. 
 [1] if  it is less than the perpendicular  drawn to the axis then no straight 
line can be drawn from the end of the perpendicular to the section such that 
the part of it cut off [by the axis] is one of minimal straight lines,  
but the minimal straight line drawn from it to the section cuts off from the axis 
adjacent to the vertex of the section a segment greater than that cut off by 
the straight line itself. 
 But [2] if the perpendicular is equal to the generated straight line, then it 
is possible to draw from its end only one straight line such that the part of it 
cut off [by the axis] is one of minimal straight lines, and the minimal straight 
line drawn from the ends of the others straight lines drawn from that point cut 
off from the axis adjacent to the vertex of the section straight lines greater 
than those cut off by the straight lines themselves. 
 [3] if the perpendicular is less than the generated straight line, then it is 
possible to draw from its end only two straight lines such that the part of each 
of them cut off [by the axis] is one of minimal straight lines, and the minimal 
straight line drawn from the ends of the other straight lines which fall between 
two straight lines from which two minimal straight lines are cut off from the axis 
adjacent to the vertex of the section segments less than those cut off by the 
straight lines themselves, but those drawn from the ends of the straight lines 
which are not between two minimal straight lines cut off from the axis straight 
lines greater than those cut off by the straight lines themselves. 
 However in the case of the ellipse our statement requires that the axis on 
which the perpendicular falls be the major axis 58. 
 First we make the section the parabola ΑΒΓ whose axis ΓΖ. We draw 
the perpendicular ΕΖ to it, let the part cut off by it from the axis, namely ΓΖ, be 
greater than the half of the latus rectum. 
 I say that, if a certain straight line is cut off from ΕΖ, and [another] 
straight line is drawn from its end under the conditions stated above, what we 
stated in the enunciation will necessarily occur. 
 [Proof]. ΓΖ is greater than the half of the latus rectum. So let the half of 
the latus rectum be ΖΗ. We cut ΓΗ at Θ such that ΘΗ is double ΘΓ, and draw 
the perpendicular ΘΒ. 
 Let some straight line Κ be to ΘΒ as to ΘΗ  be to ΗΖ 59 .  
 We take Ε on ΖΒ and, first, let ΖΕ be greater than Κ.  
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 Then I say that no straight line can be drawn from Ε such that the axis 
cuts off from it a minimal straight line. 
 We join ΒΕ [meeting ΓΖ at Λ]. [And I say that ΒΛ is not one of minimal 
straight lines]. 
 Then as Κ is to ΘΒ, so ΘΗ is to ΗΖ. And Κ is smaller than ΖΕ. Therefore 
the ratio ΖΕ to ΒΘ [equal to the ratio Ζλ to ΛΘ] is greater than the ratio ΗΘ to 
ΗΖ. And componendo the ratio ΖΘ to ΘΛ is greater than the ratio ΘΖ to ΖΗ. 
Therefore ΖΗ [equal to the half of the latus rectum] is greater than ΘΛ, and ΘΛ 
is smaller than the half of the latus rectum. Therefore the minimal straight line 
drawn from Β [to the axis] falls on the side of Ζ [from Λ], as is proved from 
Theorem 8 of this Book. Therefore ΒΛ is not one of minimal  
straight lines, as is proved in Theorem 24 of this Book. 
 Furthermore we draw ΕΙΜ [where Ι is between Λ and Γ], then I say that 
ΙΜ is not of minimal straight lines. 
 [Proof]. For let from Β a straight line ΒΟ tangent to the section be drawn 
and the perpendicular ΜΝ be drawn and continued to [meet ΒΟ at] Ξ. 
Then since the section in a parabola, ΓΟ is equal to ΓΘ, as is proved in Theorem 
35 of Book I . Therefore ΘΟ is equal to the double ΘΓ. 
 But ΘΗ had been [made equal to] the double ΘΓ. Therefore ΟΘ is equal to 
ΘΗ. And [thus] ΘΗ turns out to be greater than ΝΟ. Therefore the ratio ΘΝ  to 
ΝΟ is greater than the ratio ΝΘ to ΘΗ. And componendo the ratio ΘΟ to ΟΝ 
[equal to the ratio ΘΒ to ΝΞ] is greater than the ratio ΝΗ to ΗΘ, and pl.ΒΘΗ is 
greater than pl.ΞΝΗ. 
 Therefore pl.ΒΘΗ is much greater than pl.ΜΝΗ. But pl.ΕΖΗ is greater than 
pl.ΒΘΗ because the ratio ΕΖ to ΒΘ is greater than the ratio ΘΗ to ΗΖ, as we 
have proved above. Therefore pl.ΕΖΗ is greater than pl.ΜΝΗ, and the ratio ΖΕ to 
ΜΝ [equal to the ratio ΖΙ to ΙΝ] is greater than the ratio ΝΗ to ΖΗ. And compo-
nendo the ratio ΖΝ to ΝΙ is greater than the ratio ΝΖ to ΖΗ. Therefore ΖΗ is 
greater than ΙΝ. 
 But ΖΗ is equal to the half  of the latus rectum. Therefore ΙΝ is smaller 
than the half of the latus rectum. Therefore ΜΝ is not one of minimal straight 
lines, but the minimal straight line drawn from Μ falls on the axis toward Ζ [from 
I], as is proved from Theorems 8 and 24 of this Book. 
        Furthermore we draw the straight line ΑΡΕ[where Ρ is between Λ and Ζ], 
then I say that ΑΡ is not one of minimal straight lines. 
 For let the perpendicular ΑΣ be drawn and continued to [meet the tan-
gent at] Π. Then ΘΟ is equal to ΘΗ, as we said above. And [therefore ΘΟ turns 
out to be greater than ΣΗ, therefore the ratio ΣΘ to ΘΟ  is smaller than the ra-
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tio ΣΘ to ΣΗ. And componendo the ratio ΣΟ to ΟΘ is smaller than the ratio ΘΗ 
to ΣΗ. But as ΣΟ is to ΘΟ, so ΠΣ is to ΒΘ. Therefore the ratio ΠΣ to ΒΘ is 
smaller than the ratio ΘΗ to ΣΗ, and pl.ΠΣΗ is smaller than pl.ΒΘΗ. 
 Therefore pl.ΑΣΗ is much smaller than  pl.ΒΘΗ. 
 But we have [already] proved that pl.ΕΖΗ is greater than pl.ΒΘΗ. 
Therefore pl.ΑΣΗ is smaller than ΕΖΗ, and the ratio ΑΣ to ΕΖ is smaller than 
the ratio ΖΗ to ΣΗ. 
 But as ΑΣ is to ΕΖ , so ΣΡ is to ΡΖ. Therefore the ratio ΣΡ to ΡΖ is smaller 
than the ratio ΖΗ to ΣΗ, and the ratio ΡΖ to ΣΡ is greater than the ratio SH to 
ΖΗ. And componendo the ratio ΣΖ to ΣΡ is greater than the ratio ΣΖ to ΖΗ. 
Therefore ΖΗ is greater than ΣΡ.  
 But ΖΗ is equal to the half of the latus rectum. Therefore ΣΡ is smaller 
than the half of the latus rectum. Therefore ΑΡ is not one of minimal straight 
lines, but the minimal straight line drawn from Α falls to the side of  Ζ[from Ρ], 
as is proved from Theorems 8 and 24 of this Book.  

Therefore when ΕΖ is grater than Κ, no straight line can be drawn from Ε 
to the section such that the axis cuts off from it a segment, which is one of 
minimal straight lines. 
 Furthermore [secondly] we make ΖΕ equal to Κ. Then I say that only one 
straight line can be drawn from Ε such that a minimal straight line is cut off 
from it [by the axis], and that  other minimal straight lines drawn from the 
points where the straight lines from Ε meet the section  fall on the farther side 
[of the original straight lines] from Γ. 
 [Proof]. As ΘΗ is to ΗΖ , so Κ [equal to ΕΖ] is to ΒΘ. But as ΕΖ is to ΒΘ, 
so ΖΛ is to ΛΘ. Therefore as ΘΗ is to ΗΖ, so ΖΛ is to ΛΘ, and ΖΗ is equal to ΛΘ. 
 But ΖΗ is equal to the half of the latus rectum. Therefore ΛΘ also is equal 
to the half of the latus rectum, and ΛΒ is one of minimal straight lines, 
as is proved in Theorem 8 of this Book. 
 Then I say that no other minimal straight line will be cut off [by the axis] 
from other straight lines drawn from Ε. 
 [Proof]. For let some straight line ΜΙΕ be drawn, and the perpendicular 
ΜΝ be drawn and continued to [meet the section at] Ξ. Let ΒΟ be a tangent to 
the section. 
 Then we will prove as we proved previously that pl.ΒΘΗ [equal to pl.ΕΖΗ] 
is greater than pl.ΜΝΗ. 
 And we will prove from that, as we proved above, that ΖΗ [equal to the 
half of the latus rectum] is greater than ΙΝ. Therefore ΜΙ is not one of minimal 
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straight lines, but the minimal straight line drawn from Μ falls towards Ζ [from 
Ι]. 
 But it is drawn like ΑΡΕ, then ΑΡ is not of the minimal straight lines, but 
the minimal straight line drawn from Α falls towards Ζ. 
 [Proof]. For let the  perpendicular ΑΣ be drawn and continued to [meet 
the section at] Π. 
 Similarly too [to the above] it will be proved that pl.ΑΣΗ is smaller pl.ΒΘΗ 
[equal to pl.ΕΖΗ]. 
        Hence we will prove, as we proved previously that ΡΣ is smaller than ΗΖ. 
But ΡΣ is smaller than the half of the latus rectum. Therefore ΑΡ is not of mini-
mal straight lines, but the minimal straight line drawn from Α falls towards Ζ 
[from Ρ]. 
 Furthermore [thirdly] we make ΕΖ smaller than Κ. Then I say that one can 
draw from Ε to the section ΑΒΓ two straight lines such that two minimal 
straight lines can be cut off from them [by the axis] and that when minimal 
straight lines are drawn from the ends of other straight lines which fall between 
these two straight lines, they cut off from the axis segments smaller than the 
segments cut off by the drawn straight lines, and as for other straight lines, the 
minimal straight lines drawn from their ends cut of segments greater than those 
cut off by the straight lines themselves. 
 [Proof]. ΖΕ is smaller than Κ. Therefore the ratio ΕΖ to ΒΘ is smaller than 
the ratio Κ to ΒΘ [equal to the ratio ΘΗ to ΗΖ], and pl.ΕΖΗ is smaller than 
pl.ΒΘΗ. 
 Let pl.ΦΘΗ be equal to pl.ΕΖΗ, and let ΤΗ be a perpendicular to ΗΖ. 
 We pass through Φ the hyperbola 60 whose asymptotes ΤΗ and ΓΗ ,  
as we showed in Problem 4 of Book II. 
 Then it cuts the parabola, let it cut it at Α and Μ. We join ΕΑ and ΕΜ and 
draw the perpendiculars ΑΣ and ΜΝ then the section ΑΦΜ is a hyperbola and its 
asymptotes are ΤΗ and ΗΓ, and ΑΣ , ΜΝ, and ΦΘ have been drawn from the 
section at right angles [to an asymptote]. 
 Therefore pl.ΜΝΗ is equal to pl.ΦΘΗ, as is proved in Theorem 12 of Book 
II, and pl.ΦΘΗ is equal to pl.ΕΖΗ. Therefore as ΜΝ is to ΕΖ, so ΖΗ is to ΝΗ. 
But as ΜΝ is to ΕΖ, so ΝΙ is to ΙΖ, therefore as ΖΗ is to ΝΗ, so ΝΙ is to ΙΖ. 
And componendo as ΝΖ is to ΖΗ, so ΖΝ is to ΝΙ. 
 Therefore ΙΝ is equal to ΖΗ, which is equal to the half of the latus rectum. 
Therefore ΜΙ is one of minimal straight lines as is proved in Theorem  
8 of this Book. 
 Similarly also it will be proved that ΑΡ is one of minimal straight lines. 
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 And since ΜΙ,  and ΑΡ are minimal straight lines, and they meet at Ε, 
therefore of the straight lines drawn from Ε to the section for [any of] those 
falling between ΑΕ and ΕΜ, if a minimal straight line is drawn from the place 
where  it reaches [the section] it falls towards the vertex of the section, and has 
for the other straight lines falling outside ΑΕ and ΕΜ [the minimal straight lines 
drawn from their ends] will fall on the side [of the straight lines] farther from 
the vertex of the section, as was proved in Theorem 44 of this Book 61-63 . 
 

[Proposition] 52 
 

 Furthermore we make the section the hyperbola or the ellipse ΑΒΓ whose 
axis ΕΓΔ and center Δ, and draw from the axis perpendicular ΖΕ, and let ΕΓ be 
greater than the half of the latus rectum. 
 Then I say that  in this case [too] the same property necessarily results 
as in the parabola 64. 
 [Proof]. ΔΓ is the half on the transverse diameter, and ΓΕ is greater than 
of the half of the latus rectum. Therefore the ratio ΔΓ to ΓΕ is smaller than the 
ratio of the transverse diameter to the latus rectum. 
 Therefore if we make the ratio ΔΗ to ΗΕ equal to the ratio of the trans-
verse diameter to the latus rectum, the point Η falls between Γ and Ε. 
 We take two straight lines ΘΔ and ΔΚ in continuous proportion between 
ΗΔ and ΔΓ. 
 Let ΚΒ be a perpendicular to the axis, and let the ratio of some straight 
line Λ, to ΚΒ be equal to the ratio compounded of the ratios ΔΕ to ΕΗ and ΗΚ to 
ΚΔ 65-66   . 
 In the first instance we make ΕΖ greater than Λ. 
 Then I say that it is not possible to draw from Ζ to the section any 
straight line such that what is cut off from it [by the axis] is one of minimal 
straight lines, and that the minimal straight lines drawn from the ends of the 
straight lines drawn from Ζ to the section cut off from the axis adjacent to the 
vertex of the section segments greater than those cut off by the straight lines 
[from Ζ] themselves. 
 [Proof]. For let the straight line ΖΜΒ be joined then I say that ΒΜ is not 
one of minimal straight lines for we make the ratio ΖΝ to ΝΕ equal to the ratio 
of the transverse diameter to the latus rectum, and draw the straight lines ΖοΟ 
and ΝΩΞ parallel to ΕΓΔ, and draw Ηωο and ΔΟ parallel to ΕΖ. Then since  ΕΖ is 
greater than Λ, the ratio ΕΖ to ΒΚ is greater than the ratio Λ to ΒΚ. 
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 But the ratio ΕΖ to ΒΚ is compounded of the ratios ΖΕ to ΕΝ and ΚΧ to 
ΚΒ because ΚΧ is equal to ΕΝ. 
 And as for the ratio Λ to ΚΒ we had made it equal to  the ratio com-
pounded of the ratios ΔΕ to ΕΗ and ΗΚ to ΚΔ, then the ratio compounded of 
the ratios ΖΕ to ΕΝ and ΚΧ to ΚΒ is greater than the ratio compounded of the 
ratios ΔΕ to ΕΗ and ΗΚ to ΚΔ. 
 But as ΖΕ is to ΕΝ, so ΔΕ is to ΕΗ, because both of the ratios ΖΝ to ΝΕ 
and ΔΗ to ΗΕ are equal to the ratio of the transverse diameter to the latus rec-
tum. Therefore the remaining ratio ΚΧ to ΚΒ is greater than the ratio ΗΚ to ΚΔ. 
Therefore pl.ΧΚΔ is greater than pl.ΒΚΗ. 
 But pl.ΧΚΔ is the quadrangle ΔΧ. Therefore pl.ΚΒΗ is smaller than the 
quadrangle ΔΧ. 
 We  make the quadrangle ΗΧ that is pl.ΚΧΩ common [to both sides] then 
pl.ΒΧΩ is smaller than the quadrangle ΔΩ. But the quadrangle ΔΩ is equal to the 
quadrangle ϘΝ because as ΖΝ to ΝΕ, so ΔΗ is to ΗΕ. Therefore pl.ΒΧΩ is smaller 
the quadrangle ϘΝ. 
 And we had proved in the proof of Theorem 45 of this Book that,  when 
that is the case, then ΒΜ is not one of minimal straight lines, and that the 
minimal straight line drawn from Β cuts off from the axis adjacent to the vertex 
of the section a segment longer than ΓΜ. 
 Furthermore we draw ΖςΡ to a point other than Β, then I say that Ρς is not 
one of minimal straight lines, and that the minimal straight line drawn from Ρ 
cuts off from the axis adjacent to the vertex of the section a segment longer 
than Γς. 
 [Proof]. We draw from Β a tangent ΒΞ to the section, and draw to the 
axis the perpendicular ΡΠ and continue it to [meet the tangent at] Σ. Then, 
since the ratio ΧΚ to ΚΒ is greater than the ratio ΗΚ to ΚΔ, we make the ratio 
ΥΚ to ΚΒ equal to the ratio ΗΚ to ΚΔ, and draw through Υ a straight line 
ΤΥΦ parallel to ΕΓΔ. Then since  ΒσΤ is tangent to the section, and ΒΚ is per-
pendicular to the axis, pl.ΚΔσ is equal to sq.ΔΓ, as is proved in Theorem 37 of 
Book I . Therefore as ΚΔ is to ΔΓ, so ΔΓ is to Δσ. 
 Therefore the third proportional to ΚΔ and ΔΓ is Δσ. And the third propor-
tional to ΗΔ and ΔΘ was ΚΔ. And as ΚΔ is to ΔΓ, so ΗΔ is to ΔΘ. Therefore, as 
ΗΔ is to ΔΚ, so ΔΚ is to Δσ. 
 And when we subtract two lesser from two greater, the ratio of the re-
mainders ΗΚ to Κσ is equal to the ratio ΗΔ to ΔΚ. 
 But as ΗΔ is to ΔΚ, so ΥΒ is to ΒΚ because the ratio ΗΚ to ΚΔ was made 
equal to the ratio ΥΚ to ΚΒ. Therefore as ΗΚ is to Κσ, so ΒΥ is to ΒΚ. 
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But as ΒΥ is to ΒΚ, so ΥΤ is to Κσ. Therefore as ΗΚ is to Κσ, so ΥΤ is to Κσ, and 
ΗΚ is equal to ΥΤ. 
 But ΗΚ is equal to ΥΦ. Therefore ΥΦ is equal to ΥΤ, and Τβ is smaller than 
ΥΦ, and the ratio Υβ to Τβ is greater than the ratio Υβ to ΥΦ.   
And componendo the ratio ΥΤ to Τβ is greater than the ratio βΦ to ΥΦ. But as 
ΥΤ is to Τβ, so ΥΒ is to Σβ, and the ratio ΥΒ to Σβ is greater than the ratio βΦ to 
ΦΥ. Therefore pl.ΒΥΦ is greater than pl.ΣβΦ. 
 Therefore pl.ΒΥΦ is much greater than pl.ΡβΦ. 
 Furthermore as ΗΚ is to ΚΔ, so ΥΚ is to ΚΒ. Therefore pl.ΒΚΗ is equal to 
pl.ΔΚΥ. 
 We make pl.ΥΚΗ common [to both sides]. 
        Then pl.ΒΥΦ is equal to pl.ΔΗ,ΥΚ because ΥΦ is equal to ΗΚ. And pl.ΔΗ,ΥΚ 
is the quadrangle ΔΦ. Therefore pl.ΒΥΦ is equal to the quadrangle ΔΦ. 
 But pl.ΒΥΦ was [shown to be] greater than pl.ΡβΦ, therefore the quad-
rangle ΔΦ is greater than pl.ΡβΦ. 
 In the case of the hyperbola we make pl.βγΩ. Then pl.βγΩ is smaller than 
the sum of the quadrangles ΔΦ and βΩ.  
 In the case of the ellipse when we subtract pl.βγΩ [from both sides] the 
quadrangle ΔΦ without the quadrangle βΩ is greater than pl.ΡγΩ. 
 Thus pl.ΡγΩ is much smaller than the quadrangle ΔΩ [in both cases]. 
 But the quadrangle ΔΩ is equal to the quadrangle ϘΝ because as ΖΝ is to 
ΝΕ, so ΔΗ is to ΗΕ. Therefore pl.ΡγΩ is smaller than the quadrangle οΝ. 
 But we showed in the proof of Theorem 45 of this Book that in  that case 
ΡΓ is not one of minimal straight lines, and that minimal straight line drawn from 
Ρ cuts off from the axis adjacent to the vertex of the section longer than ΓΓ. 
 Furthermore we draw ΖεΑ [on the other side of ΖΜΒ], then I say that Αε 
is not one of minimal straight lines, and that the minimal straight line drawn 
from Α cuts off from the axis adjacent to the vertex of the section a segment 
longer than Γε. 
 [Proof]. For let the perpendicular Αζθ be drawn and continued to [meet 
the tangent at] δ. We have already proved that ΦΥ is equal to ΥΤ. Therefore Φζ 
is smaller than ΥΤ. Therefore the ratio ζΥ to Φζ is greater than the ratio ζΥ to 
ΥΤ. And componendo the ratio ΥΦ to Φζ is grater than the ratio ζΤ to ΤΥ. 
 But as ζΤ is to ΤΥ, so ζδ is to ΒΥ. Therefore the ratio ΥΦ to Φζ is greater 
than the ratio δζ to ΒΥ, and pl.ΒΥΦ is greater than pl.δζΦ. 
 And we will prove by the method that we followed previously that pl.ΑθΩ 
is smaller than the quadrangle ΩΖ. 
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 And it will be proved from that as was shown in the proof of Theorem 45 
of this Book, that Αε is not one of minimal straight lines, and that the  
minimal straight line drawn from Α cuts off from the axis adjacent to the vertex 
of the section a segment longer than Γε. 
 Furthermore [secondly] we make ΖΕ equal to Λ, then I say that only one 
straight line can be drawn from Ζ such that the part of it cut off [by the axis] is 
one of minimal straight lines, and that the minimal straight lines drawn from the 
ends of the remaining straight lines cut off from the axis adjacent to the vertex 
of the section segments longer than those cut off by the straight lines them-
selves. 
 [Proof]. We proceed as we did in the first case for the construction of the 
perpendicular ΒΚ, and join ΖΒ. Then the ratio ΖΕ to ΒΚ,  is equal to the ratio Λ 
to ΒΚ. Now ΖΕ to ΒΚ is compounded of the ratios ΖΕ to ΕΝ and ΚΧ to ΚΒ for 
ΚΧ is equal to ΕΝ, and the ratio Λ to ΒΚ is compounded of the ratios ΔΕ to ΕΗ 
and ΗΚ to ΚΔ according to our previous construction the ratio compounded of 
the ratios ΖΕ to ΕΝ and ΚΧ to ΚΒ is equal to the ratio compounded of the ratios 
ΔΕ to ΕΗ and ΗΚ to ΚΔ. 
 But as ΖΕ is to ΕΝ, so ΔΕ is to ΕΗ. Therefore the remaining ratio ΚΧ to ΚΒ 
is equal to the ratio ΗΚ to ΚΔ. 
 Therefore pl.ΧΚΔ [which is the quadrangle ΔΧ] is equal to pl.ΒΚΗ. 
 We make pl.ΧΚΒ common [to both sides], by adding in the case of the 
hyperbola and subtracting in the case of the ellipse, then pl.ΒΧΩ is equal to the 
quadrangle ΔΩ. But the quadrangle ΔΩ is equal to the quadrangle ΩΖ. 
 Therefore the quadrangle ΩΖ is equal to pl.ΒΧΩ. 
 And we had shown in the proof of Theorem 45 of this Book that, when 
that is the case, ΒΜ is one of minimal straight lines. 
 I say that no other straight line can be drawn from Ζ such that the part of 
it cut off [by the axis] in one of minimal straight lines. 
 [Proof] For let ΖςΡ and the perpendicular ΡΠ be drawn. Then we will prove 
by the same method as before that ΧΩ is equal to ΧΞ. Therefore Ξγ is smaller 
than ΧΩ, and the ratio Χγ to γΞ is greater than the ratio Χγ to ΧΩ. 
And componendo the ratio ΧΞ to Ξγ is greater than the ratio γΩ to ΩΧ. 
 But as ΧΞ is to Ξγ, so ΒΧ is to Σγ. Therefore the ratio ΒΧ to Σγ is greater 
than the ratio γΩ to ΩΧ, and pl.ΒΧΩ is greater than pl.ΣγΩ. 
 Therefore pl.ΒΧΩ is much greater than pl.ΡγΩ.  
 And we had proved that pl.ΒΧΩ is equal to the quadrangle ΩΖ. Therefore 
pl.ΡγΩ is smaller than the quadrangle ΩΖ. 
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 But we showed in the proof of Theorem 45 of this Book that, when that is 
the case, Ρς is not one of minimal straight lines, and that the minimal straight 
line drawn from Ρ  cuts off from the axis adjacent to the vertex of the section a 
segment greater than Γς. 
 Similarly too it can be proved that Αε is not one of two minimal straight 
lines, and that the minimal straight line drawn from Α cuts off from the axis ad-
jacent to the vertex of the section a segment longer than Γε. 
 Furthermore [thirdly] we make ΖΕ smaller than Λ. Then I say that only 
two straight lines can be drawn from Ε such that the part of [each of] these 
two cut off [by the axis] is one of minimal straight lines, and that the minimal 
straight lines drawn from the ends of the straight lines drawn between these 
two minimal straight lines cut off from the axis adjacent to the vertex of the 
section segments smaller than those cut off by the straight lines themselves, 
and that the minimal straight lines drawn from the ends of the remaining 
straight lines cut off from the axis adjacent to the vertex to the sections seg-
ments greater than those cut of by the straight lines themselves. 
 [Proof]. The ratio ΖΕ to ΒΚ is smaller than the ratio ΛΒΚ. And hence it will 
be proved by a method similar to the preceding that the ratio ΚΧ to ΚΒ is 
smaller than the ratio ΗΚ to ΚΔ, and that the quadrangle ΩΖ is smaller than 
the ratio ΗΚ to ΚΔ. Therefore we make pl.ΙΧΩ equal to the quadrangle ΩΖ, and 
draw a hyperbola 67 passing through I with asymptotes ΞΩ and ΩΗ,  then it is 
constructed as we showed Problem 4 of Book II, that is the section ΑΙΡ. 
 We draw the perpendiculars Αθ and Ργ. Then each of pl.ΑθΩ and pl.ΡγΩ 
is equal to pl.ΙΧΩ because of what is proved in Theorem 12 of Book II . 
 And pl.ΙΧΩ was made equal to the quadrangle ΩΖ. Therefore pl.ΑθΩ is 
equal to pl.ΡγΩ, which is equal to the quadrangle ΩΖ. 
 And when that is the case, then it will be proved as we showed in the 
preceding part of this Theorem, that each of two straight lines Αε and Ρς is one 
of minimal straight lines. 
 And they have been drawn, so as to meet at Ζ, and we have shown in 
Theorem 45 of this Book, that when that is the case no other straight line can 
be drawn from Ζ such that the part of it cut off [by the axis] is one of minimal 
straight lines, and that for the straight lines drawn from Ζ between Αε and Ρς, 
when minimal straight lines are drawn from their ends to the axis, they cut off 
from the axis adjacent to the vertex of the section segments smaller than the 
segments cut off by the straight lines themselves,  and that the minimal 
straight lines drawn from the ends of the remaining straight lines are in the op-
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posite case, that is they cut of segments greater [than those cut of by the 
straight lines themselves]. 
 In the case of the ellipse this enunciation depends on the axis, which is 
used the major axis 68-73   . 
 

[Proposition] 53 
 

 If a point is taken outside of one of two halves of an ellipse into which the 
major axis divides it, such that the perpendicular drawn from it to the axis falls 
on the center of the section, and [such that]  the ratio of that perpendicular 
together with the half of the minor axis to the half of the minor axis is not 
smaller than the ratio on the transverse diameter to the latus rectum, then no 
straight line can be drawn from that point to the section such that the part of it 
falling between the axis and the section is one of straight lines, rather the mini-
mal straight line drawn from its extremity falls on that side of the drawn 
straight line which is farther from the vertex of the section 74. 
 Let there be the half of the ellipse ΒΑΓ with major axis ΒΓ. We take a 
point outside of it [such that] when a perpendicular [to the major axis] is drawn 
from it, it falls on the center, that [taken point] is Δ. We draw from Δ a perpen-
dicular  ΔΕ to ΓΒ. Let Ε on which the perpendicular falls be the center of the 
section, and let the ratio ΔΑ to ΑΕ be not smaller than the ratio of the trans-
verse diameter to the latus rectum. 
 Then I say that no straight line can be drawn from Δ such that the part of 
it cut off between the section and ΒΓ is one of minimal straight lines, and that, 
if a straight line is drawn from it, such as ΔΚ, then the minimal straight line 
drawn from Κ falls on the side [of ΔΚ] towards Ε. 
 [Proof]. For let two perpendiculars ΚΗ and ΚΖ be drawn. Then the ratio 
ΑΔ to ΑΕ is not smaller than the ratio of the transverse diameter to the latus 
rectum. 
 But the ratio ΔΑ to ΑΕ is smaller than the ratio ΔΖ to ΖΕ. Therefore the 
ratio ΔΖ to ΖΕ [equal to the ratio ΕΗ to ΗΘ] is greater than the ratio of the 
transverse diameter to the latus rectum.  
 So let the ratio ΕΗ to ΗΛ be equal to the ratio of the transverse diameter 
to the latus rectum. Then ΚΛ is one of minimal straight lines, as is proved in 
Theorem 10 of this Book, therefore ΚΘ is not one of minimal straight lines, as is 
proved in Theorem 25 of this Book, and the minimal straight line drawn from Κ 
falls on the side of Ε from ΚΛ. 
 

[Proposition] 54 
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 If a point is taken outside of one of two halves of an ellipse into which the 
major axis divides it, and a perpendicular is drawn from it to [the major axis] 
such that it ends at the center, and the ratio of that perpendicular together 
with the half of the minor axis to the half of the minor axis is smaller than the 
ratio of the transverse diameter to the latus rectum, then amongst the straight 
lines drawn from that point to the section in each of two quadrants [into which 
the minor axis divides the half of the ellipse] there is only one straight line such 
that the part of it cut of between the section and the major axis is minimal 
straight line, and for other straight lines drawn on that side no minimal straight 
line is cut off from them [between the axis and the section, but for those of 
them drawn closer to the vertex of the section than the straight line from which 
a minimal straight line is cut off,  the minimal straight lines drawn from their 
ends are farther [from the vertex]. And for those of them that are farther [from 
the vertex of the section than is the minimal straight line], the minimal straight 
lines drawn from their ends are drawn closer [to the vertex]. 
 Let there be the ellipse ΒΑΓ whose major axis ΒΓ, and the let us take out-
side of it a point such that when a perpendicular is drawn from it, it falls on the 
center, that is Δ. We draw from it a perpendicular ΔΕ to ΓΒ  let it fall on the 
center, and let the ratio ΔΑ to ΑΕ be smaller than the ratio of the transverse di-
ameter to the latus rectum. 
 I say that of straight lines drawn from Δ in one of two quadrants only one 
is such that the part of it cut off between ΒΑΓ and ΒΓ is a minimal straight line 
and that for those of the remaining straight lines drawn closer to Β the minimal 
straight line drawn from the end [of each] of them is farther [from Β] and for 
those of them drawn farther from Β the minimal straight line drawn from the 
end [of each] of them is closer [to Β]. 
 [Proof]. The ratio ΔΑ to ΑΕ is smaller than the ratio of the transverse di-
ameter to the latus rectum. We make the ratio ΔΗ to ΗΕ equal to the ratio of 
the transverse diameter to the latus rectum, and draw ΗΘ and ΘΚ parallel to ΑΕ 
and ΒΓ,  and join ΘΔ [cutting ΒΓ at Λ]. 
 Then I say that ΛΘ, which is a part of ΔΘ, is a minimal straight line be-
cause the ratio ΔΗ to ΗΕ [equal to the ratio ΕΚ to ΚΛ] is equal to the ratio of 
the transverse diameter to the latus rectum, and Ε is the center of the section. 
Therefore ΘΛ is one of minimal straight lines as is proved in Theorem 10 of this 
Book. 
 And ΑΕ is also one of minimal straight lines, as is proved in Theorem 11 of 
this Book. 
 And both these straight lines meet at Δ. 
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 So for those of straight lines drawn from Δ whose distance from Β is 
greater than the distance of ΦΘ [from Β], the minimal straight line drawn from 
the end of [each of] them is closer to Β than it, and for those of them whose 
distance from Β is smaller [than that of ΔΘ], the minimal straight line drawn 
from the end of [each of] them is farther from Β than it, as is proved in Theo-
rem 46 of this Book 75. 
 

 [Proposition] 55 
 

 If a point is taken outside of one of two halves of an ellipse into which the 
major of its two axes divides it and a perpendicular is drawn from it to the axis, 
so as not to fall on the center, then there can be drawn from that point to the 
section a straight line such that the part of it cut off between the section and 
the major axis is one of minimal straight lines, and it cuts the other of two 
halves of the major axis on which the perpendicular does not fall, and no other 
straight line can be drawn from that point cutting that half [of the axis] such 
that the part of it cut off is a minimal straight line76.   
 Let there be the ellipse ΑΒΓ whose major axis ΑΓ and center Δ, and let 
the taken point be Ε, and the perpendicular drawn from it to the axis ΑΓ be the 
perpendicular ΕΖ, where the center is not Ζ. 
       I say that there can be drawn from Ε a straight line cutting ΔΓ such that 
the part of it falling between ΑΒΓ and ΔΓ is one of minimal straight lines. 
 For let the ratio ΕΗ to ΗΖ be made equal to the ratio of the transverse 
diameter to the latus rectum, and likewise be made the ratio ΔΘ to ΘΖ.  
 We draw through Η a straight line ΚΛ parallel to ΑΓ, and draw through Θ a 
straight line  ΜΘΛ parallel to ΕΗ. 
 We construct a hyperbola passing through Ε with asymptotes ΜΛ and ΛΚ, 
as is shown in Problem 4 of Book II . Let that section be ΕΝ, and let it cut the 
ellipse at Ν. 
 Then I say that, when we join ΝΕ this straight line is one of minimal 
straight lines. 
 [Proof]. For let  ΕΝ be continued to meet ΛΜ and ΛΚ. Let it meet them at 
Μ and Κ. 
 We draw two perpendiculars ΝΟ and ΚΠ to ΑΓ. Then ΜΕ is equal to ΚΝ, as 
is proved in Theorem 8 of Book II . Therefore ΖΘ is equal to ΠΟ, and the ratio 
ΕΗ to ΗΖ is equal to the ratio of the transverse diameter to the latus rectum, 
and is equal to the ratio ΖΠ to ΠΞ. Therefore the ratio ΖΠ to ΠΞ is equal to the 
ratio of the transverse diameter to the latus rectum. 
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 But the ratio ΔΘ to ΘΖ was also [made] equal to the ratio of the trans-
verse diameter to the latus rectum. Therefore the ratio ΖΠ to ΠΞ is equal to the 
ratio ΔΘ to ΘΖ. 
 But ΘΖ is equal to ΠΟ, and [hence] ΔΘ is equal to the sum of ΠΟ and ΔΖ. 
So, when we subtract ΖΘ and ΠΟ from ΖΠ, and ΠΟ from ΠΞ, the ratio of the 
remainder ΔΟ to the remainder ΟΞ is equal to the ratio of the whole ΖΠ, to the 
whole ΠΞ, which is equal to the ratio of the transverse diameter to the latus 
rectum. 
 Therefore the ratio ΔΟ to ΟΞ is equal to the ratio of the transverse di-
ameter to the latus rectum. And ΝΟ is a perpendicular [to the axis] and Δ is the 
center. Therefore ΝΞ is one of minimal straight lines, as is proved in Theorem 10 
of this Book. 
 

[Proposition] 56 
 

 And what we said in the preceding theorem concerning the fact that the 
hyperbola will meet the ellipse will be proved by us  drawing from Γ a tangent 
Go to the ellipse. Then the ratio ΔΘ to ΘΖ is equal to the ratio of the transverse 
diameter to the latus rectum. 
 But the ratio ΔΘ to ΘΖ is smaller than the ratio ΓΘ to ΘΖ. Therefore the 
ratio ΓΘ to ΘΖ is greater than the ratio of the transverse diameter to the latus 
rectum, which is equal to the ratio ΕΗ to ΗΖ. Therefore the ratio ΓΘ to ΘΖ is 
greater than the ratio ΕΗ to ΗΖ, and pl.ΓΘ,ΗΖ is greater than pl.ΘΖ,ΕΗ 
But ΗΖ is equal to ΓϘ, and ΖΘ is equal to ΗΛ, therefore pl.Θγ Ϙ is greater than 
pl.ΕΗΛ. 
        So the hyperbola passing through Ε with asymptotes ΜΛ and ΛϘ cuts ΓϘ, 
        as is proved from the converse of Theorem 12 of Book II . And ΓϘ is tan-
gent to the section ΑΒΓ [at Γ]. Therefore the mentioned hyperbola cuts the 
section ΑΒΓ. 
 

[Proposition] 57 
 

  Furthermore now we make the ellipse ΑΒΓ whose major axis ΓΑ, and take 
the point Δ below the axis, and draw from it the perpendicular ΔΖ, and let the 
center be  Ε, and draw from Δ the straight line ΔΗΒ from which one of minimal 
straight lines is cut off [between the axis and the section],  let the minimal 
straight line be ΒΗ, and let it cut ΓΗΕ, and draw ΔΚ and ΔΘ [on either side of 
ΔΗΒ, meeting ΓΕ at Π and Ξ] and from the center Ε draw ΕΝ parallel to ΔΖ, now 
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ΒΗ is one of minimal straight lines, so it meets the  minimal straight line drawn 
from the center inside the angle ΓΖΔ,  let it meet it at Ν. Then the straight line 
joining Ν and Θ cannot have a minimal straight line cut off from it between the 
section and its [major axis], but  the minimal straight line drawn from Θ is closer 
to Γ [than ΝΘ],as is proved in Theorem 46 of this Book. 
 Therefore ΘΞ is not one of minimal straight lines, as is proved in Theorem 
25 of this Book. 
       Similarly too it will be proved that ΚΠ is not one of minimal straight lines, 
and that the minimal straight line drawn from Κ falls on the side of Α [from ΓΙ]. 
 

 [Proposition] 58 
 

 For every point taken outside one of conic sections provided that it is not 
of the axis wherever the axis is continued in a straight line, it is possible for us 
to draw from it some straight line such that the part of it which falls between 
the section and its axis is one of minimal straight lines 77. 
 Let the section first be the parabola ΑΒ whose its continued axis ΓΖ. 
We take outside of the section the point Δ, not on the axis. 
 I say that there can be drawn from Δ a straight line such that the part of 
it which falls between ΑΒ and ΒΓ is one of minimal straight lines. 
 [Proof]. For let the perpendicular ΔΕ to ΓΖ  wherever it falls on it be 
drawn let ΕΖ be equal to the half of the latus rectum, and let ΖΗ be a perpen-
dicular to ΖΓ. 
 We construct the hyperbola ΔΑΘ passing through Δ with asymptotes ΗΖ 
and ΖΓ, as is shown in Problem 4 of Book II . 
 Then it will cut the parabola, let it cut it at Α. We join ΔΑ and continue it 
[on both sides] to Η and Γ,  and drop a perpendicular ΑΚ from Α onto ΓΖ. Ν  
 Then ΔΗ is equal to ΑΓ, as is proved in Theorem 8 of Book II ,therefore ΖΕ 
is equal to ΚΓ. 
 But ΖΕ is equal to the half of the latus rectum. Therefore ΚΓ is equal to 
the half of the latus rectum. And ΚΑ is a perpendicular [from the axis to the 
section]. Therefore ΑΓ is one of minimal straight lines, as is proved in Theorem 
8 of this Book. 
 

[Proposition] 59 
 

 Furthermore we make the section the hyperbola or the ellipse ΑΒ whose 
axis ΒΔ and center Γ, and take outside of the section the point Ε not on the 
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continuation of the axis, and draw from it the perpendicular ΕΖ to ΒΔ, and first 
let that perpendicular not fall on the center. 
 I say that it is possible for us to draw from Ε a straight line such that the 
part of it falling between ΑΒ and ΒΔ is a minimal straight line. 
 [Proof]. For let the ratio ΓΗ to ΓΖ be equal to the ratio of the transverse 
diameter to the latus rectum. We draw ΗΜ at right angles [to ΓΖ], and make 
the ratio ΕΘ to ΘΖ equal to the ratio of the transverse diameter to the latus 
rectum,  and pass through Θ a straight line  ΚΛ parallel to ΒΔ. We construct the 
hyperbola passing through E with the asymptotes ΜΚ and ΚΛ, as is shown in 
Problem 4 of Book II . Then it will meet the section ΑΒ. Let that hyperbola be 
ΕΑΞ, and let it meet the section ΑΒ at Α. We join ΕΑ and continue it a straight 
line [on both sides] to Μ and Λ and draw the perpendicular ΑΝ [to ΒΔ]. Then 
ΜΕ is equal to ΑΛ, as is proved in Theorem 8 of Book II, therefore ΚΘ is equal to 
ΟΛ, and [hence] ΟΚ is equal to ΘΛ, and ΝΗ is equal to ΘΛ. 
 And the ratio ΖΔ to ΘΛ is equal to the ratio ΖΕ to ΕΘ, which is equal to 
the ratio ΓΖ to ΓΗ because both ratios ΓΗ to ΗΖ and ΕΘ to ΘΖ are equal to the 
ratio of the transverse diameter to the latus rectum. Therefore the ratio ΖΔ to 
ΝΗ is equal to the ratio ΓΖ to ΓΗ. 
 And when we add the ratios in the case of the hyperbola and separate 
them in the case of the ellipse, the ratio ΔΓ to ΓΝ is equal to the ratio ΖΓ to ΓΗ. 
 And convertendo in the case of the ellipse and dividendo in the case of 
the hyperbola the ratio ΓΗ to ΗΖ [equal to the ratio of the transverse diameter 
to the latus rectum] is equal to the ratio ΓΝ to ΝΔ, and ΝΑ is a perpendicular to 
ΒΔ. So ΑΔ is one of minimal straight lines, as is proved in Theorems 9 and 10 of 
this Book. 
 The proof is similar if the perpendicular falls outside of Β. 
 

[Proposition] 60 
 

Furthermore we make the perpendicular which is drawn from the point taken 
outside of the hyperbola fall on the center as the perpendicular ΓΔ, and make 
the ratio ΓΕ to ΕΔ equal to the ratio of the transverse diameter to the latus rec-
tum and draw ΕΑ parallel to ΔΖ [to meet the section at Α], and join ΓΑ and con-
tinued it to [meet the axis at] Ζ, then I say that ΑΖ is one of minimal straight 
lines 79. 
 [Proof]. For let from Α the perpendicular ΑΗ to ΔΖ be drawn. Then the ra-
tio ΓΕ to ΕΔ is equal to the ratio of the transverse diameter to the latus rectum, 
and is equal to the ratio ΓΑ to ΑΖ. 
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 But the ratio ΓΑ to ΑΖ is equal to the ratio ΔΗ to ΗΖ. Therefore the ratio 
ΔΗ to ΗΖ is equal to the ratio of the transverse diameter to the latus rectum.  
And ΑΗ is a perpendicular [from the section to the axis]. Therefore ΑΖ is one of 
minimal straight lines, as is proved in Theorem 9 of this Book. 
 

[Proposition] 61 
 

 Furthermore [in the case of the hyperbola] we make the perpendicular fal-
ling from the taken point be on the other side of the center as the perpendicular 
ΓΔ, and let the center be Ε, and the section ΑΒ, and make the ratio ΕΖ to ΖΔ 
equal to the ratio of the transverse diameter to the latus rectum, and also make 
the ratio ΓΗ to ΗΔ equal to the ratio of the transverse diameter to the latus 
rectum, and draw ΗΘ parallel to ΔΒ, and ΖΚ and ΕΜ parallel to ΓΔ, and construct 
the hyperbola passing through Ε with the asymptotes ΘΚ and ΚΖ, then [that 
hyperbola] will cut the section ΑΒ, let it cut it at Α, and let the hyperbola be ΑΕ. 
 We join ΓΑ and continue it to [meet ΔΒ at] Λ. 
 I say that ΑΛ is one of minimal straight lines 80 . 
 [Proof]. For let ΘΑΟ perpendicular to ΔΟ be drawn . Then the ratio ΓΗ to 
ΗΔ is equal to the ratio ΕΖ to ΖΔ. Therefore pl.ΓΗΚ [equal to pl.ΓΗ,ΖΔ] is equal 
to pl.ΚΜΕ [equal to pl.ΖΕ,ΔΗ].  
 But pl.ΚΜΕ is equal to pl.ΚΘΑ because of the asymptotes, as is proved in 
Theorem 12 of Book II. 
 Therefore pl.ΓΗΚ is equal to pl.ΚΘΑ, and the ratio ΑΘ to ΓΗ is equal to 
the ratio ΗΚ to ΚΘ. But the ratio ΑΘ to ΓΗ is equal to the ratio ΘΝ to ΝΗ. 
Therefore the ratio ΗΚ to ΚΘ is equal to the ratio ΝΘ to ΝΗ, and ΚΘ [equal to 
ΖΟ] is equal to ΝΗ. Therefore the ratio ΑΔ to ΝΗ is equal to the ratio ΑΔ to ΖΟ, 
and [also] is equal to the ratio ΑΓ to ΓΝ. Therefore the ratio ΛΔ to ΖΟ is 
equal to the ratio ΛΓ to ΓΝ. 
 But the ratio ΛΓ to ΓΝ is equal to the ratio ΔΓ to ΓΗ. Therefore the ratio 
ΛΔ to ΖΟ is equal to the ratio ΔΓ to ΓΗ. But the ratio ΔΓ to ΓΗ is equal to the 
ratio ΔΕ to ΕΖ, and the ratio ΛΔ to ΖΟ is equal to the ratio ΔΕ to ΕΖ. 
 Therefore the ratio of the remainder [of ΛΔ without ΔΕ, namely ΛΕ], to 
the remainder [ of ΖΟ without ΕΖ, namely ΕΟ], is equal to the ratio ΔΕ to ΕΖ. 
 And dividendo the ratio ΕΟ to ΟΛ is equal to the ratio ΕΖ to ΖΔ, which is 
equal to the ratio of the transverse diameter to the latus rectum. 
 Therefore the ratio ΕΟ to ΟΛ is equal to the ratio of the transverse di-
ameter to the latus rectum. Therefore ΛΑ is one of minimal straight lines, as is 
proved in Theorem 9 of this Book. 
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[Proposition] 62 

 
 It is possible for us to draw one of minimal straight lines through any 
point, which is between one of conic sections and its axis 81. 
 Let the section first be the parabola ΑΒ whose axis ΒΗ. We take in the 
mentioned place the point Γ. 
 Then I say that it is possible for us to draw through Γ one of minimal 
straight lines. 
 [Proof]. For let from Γ the perpendicular ΓΔ [to the axis] be drawn. 
 Let the half of the latus rectum be ΔΕ. 
 We draw from Ε the perpendicular ΕΘ to ΔΗ, and construct a hyperbola 
passing through Γ with asymptotes ΘΕ and ΕΗ, then this hyperbola will cut the 
parabola. So [let it cut it at Α, and] let the hyperbola be ΑΓ. We join the 
straight line ΑΓ and continue it to [meet ΕΔ at] Η [and to meet ΕΘ at Θ]. 
 Then I say that ΑΗ is one of minimal straight lines. 
 [Proof]. For let The perpendicular ΑΖ be drawn. Then ΓΗ is equal to ΘΑ, 
as is proved in Theorem 8 of Book II. Therefore ΔΗ is equal to ΕΖ. 
 But ΕΔ is the half of the latus rectum. Therefore ΖΗ is the half of the latus 
rectum. So ΑΗ is one of minimal straight lines, as is proved in Theorem 8 of this 
Book. 
 

[Proposition] 63 
 

 Furthermore we make the section the hyperbola or the ellipse ΑΒ whose 
axis ΒΛ and center Γ, and take in the mentioned place  the point Δ. 
 I say that it is possible for us to draw through Δ one of minimal straight 
lines 82. 
 [Proof]. For let the perpendicular ΔΕ [to the axis] be drawn, and make the 
ratio ΓΘ to ΘΕ equal to the ratio of the transverse diameter to the latus rectum, 
and likewise [make] the ratio ΔΖ to ΕΖ [equal to the ratio of the transverse di-
ameter to the latus rectum]. 
 We draw ΚΗ [through Ζ] parallel to ΒΓ, and ΘΞ parallel to ΔΕ, and con-
struct a hyperbola passing through Δ with asymptotes ΞΗ and ΗΚ. Then this 
section will cut the hyperbola and the ellipse, so [let it cut it at Α, and let the 
section be ΑΔ. We join the straight line ΑΔ and continue it [on both sides] to Ξ 
and Κ, and drop the perpendicular ΑΜ. 
 Then I say that ΑΛ is one of minimal straight lines. 
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 [Proof]. ΞΑ is equal to ΔΚ, as is proved in Theorem 8 of Book II . 
Therefore ΗΝ is equal to ΖΚ, and the ratio of ΚΖ to the difference between ΚΖ 
and ΕΛ is equal to the ratio ΔΖ to ΖΕ. 
 But ΚΖ is equal to ΝΗ, and ΝΗ is equal to ΘΜ. Therefore the ratio of ΘΜ 
to the difference between ΘΜ and ΕΛ is equal to the ratio ΔΖ to ΖΕ. 
 But the ratio ΔΖ to ΖΕ is equal to the ratio ΓΘ to ΘΕ. Therefore the ratio 
of ΘΜ to the difference between ΘΜ and ΕΛ is equal to the ratio ΓΘ to ΘΕ, and 
dividendo in the case of the ellipse and componendo in the case of the hyper-
bola the ratio ΓΜ to ΜΛ is equal to ΜΛ the ratio ΓΘ to ΓΕ. 
 But the ratio ΓΘ to ΘΕ is equal to the ratio of the transverse diameter to 
the latus rectum, and ΜΑ is a perpendicular to ΓΒ. Therefore ΑΛ is one of mini-
mal straight lines. 

 
[Proposition] 64 

 
 If a point is taken below the axis of a parabola or a hyperbola, such that 
the straight line drawn from it to the vertex of the section forms with the axis 
an acute angle, and [such that] it is not possible to draw from that point to the 
section a straight line such that the part of it falling between the section and 
the axis is one of the minimal straight lines, or if only one of straight lines drawn 
from that point to one side [of the axis], which is different from the side where 
the point is, can have cut off from it [by the axis and the section] a minimal 
straight line, then the straight line drawn from  that point to the vertex of the 
section is the shortest of the straight lines drawn from that point to that side 
of the section, and of the remaining straight lines those drawn closer to it are 
shorter than those drawn farther 83. 
 Let the section first be the parabola ΑΒΓ whose axis ΑΕ, and let there 
be the point Ζ below the axis ΑΕ and let there be the point Ζ below the axis, 
and let the angle ΖΑΕ which is formed by the straight line ΖΑ drawn from Ζ to 
vertex of the section and the axis ΑΕ be an acute angle, and first let it not be 
possible to draw from Ζ to the section any straight line such that the part of it 
cut off between the section and the axis is one of minimal straight lines 
 Then I say that the shortest of straight lines drawn from Ζ to the section 
ΑΓ is ΑΖ, and that of the remaining straight lines [drawn from Ζ to the section] 
those drawn closer to it are shorter than those drawn farther . 
 That will be proved after we prove that when straight lines drawn from Ζ 
ending at points of the section, in the case where not one of these straight lines 
can have a minimal cut off from it [between the axis and the section], 
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then the minimal straight lines drawn from the points on the section and falling 
on the axis fall on that side of the straight lines drawn from Ζ which is farther 
from Α. We prove that as follows. 
 We draw from Ζ the perpendicular ΖΕ, then ΑΕ is either equal to the half 
of the latus rectum, or greater [than it], or smaller than it. 
 First let it be equal to it or smaller than it. Then for straight lines from 
drawn from Ζ to the section the part of them cut off between the section and 
the axis is not one of minimal straight lines, but the minimal straight lines drawn 
to the axis from the points to which [the straight lines drawn from Ζ] reach fall 
on that side of drawn straight lines which is farther from Α,  as is proved in 
Theorem 49 of this Book. 
 Furthermore we make ΑΕ greater than the half of the latus rectum, and 
let the half of the latus rectum be ΕΘ, and let ΘΗ be the double ΗΑ,  and draw  
from Η the perpendicular ΗΒ to ΑΕ, and [let Λ be such that] the ratio Λ to ΗΒ is 
equal to the ratio ΘΗ to ΘΕ, then ΖΕ is either equal to Λ, or smaller than it, or 
greater than it. 
 Now that ΖΕ is not equal Λ is evident for it was proved in Theorem 51 of 
this Book that when Λ is equal to ΕΖ, then one straight line can be drawn from Ζ 
such that the part of it cut off between the section and the axis is a minimal 
straight line, but we have stated  that no straight line can be drawn from Ζ such 
that the part of it cut off between the section and the axis is a minimal straight 
line. Therefore Λ is not equal to ΕΖ. 
 Similarly too it will be proved that ΕΖ cannot be smaller than Λ for it was 
proved in Theorem 51 of this Book that, when ΕΖ is smaller than Λ, then there 
can be drawn from Ζ two straight lines such that the part which the axis cuts 
off from each of them is a minimal straight line, but we had made Ζ a point such 
that it is not possible to draw from it a straight line such that a minimal straight 
line is cut off from it between the axis and the section. 

Therefore ΖΕ is not smaller than Λ. And it was proved that is not equal to 
it. 
 And it was also proved in Theorem 51 of this Book that, when ΖΕ is 
greater than Λ, then no straight line can be drawn from Ζ such that the part of 
it falling between the section and its axis is a minimal straight line, and the for 
the  straight lines drawn from Ζ to the section, when minimal straight lines are 
drawn from their ends to the axis, they fall on the axis [removed] from those 
straight lines on the side which farther from Α. 
 Therefore it has been proved that if ΑΕ is equal to for smaller than the 
half of the latus rectum, then it must be that for the straight lines drawn from Ζ 
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to the section, when minimal straight lines are drawn from the points of their 
ends, they fall on the side which is farther from Α [than the original straight 
lines], and [it has also been proved that] if ΑΕ is greater than the half of the 
latus rectum, then ΖΕ is greater than Λ, as we proved, and in that case it must 
also be that for the straight lines drawn from Ζ to the section, when minimal 
straight lines are drawn from the points of their ends, they fall on the side which 
is farther from Α. 
 Therefore since that has been proved, then I say that ΖΑ is the shortest 
of the straight lines drawn from Ζ to the section ΑΒΓ, and that of the remaining 
straight lines [drawn to ΑΒΓ from Ζ], those drawn closer to it are shorter than 
those drawn farther. 
 [Proof]. For let ΖΒ and ΖΓ be drawn. Then, if possible, first let ΑΖ be equal 
to ΒΖ. We draw from Α the straight line ΑΚ tangent to the section. Then ΑΚ is 
perpendicular to the axis ΑΕ, as is proved in Theorem 17 of Book I because it is 
parallel to the ordinates dropped on the axis. Therefore the angle ΖΑΚ is obtuse. 
Therefore we draw from Α the perpendicular ΑΝ to ΑΖ, then it falls in side of 
the section because it is not possible for any other straight line to fall between 
the tangent and section, as is proved in Theorem 32 of Book I . 
 We draw from Β the tangent ΒΞ to the section. Then the minimal straight 
line drawn between Β and the axis falls on the side of ΒΖ farther from Α, as we 
proved above. And [that minimal straight line] forms a right angle with ΒΞ, as is 
proved in Theorem 27 of this Book. Therefore the angle ΖΒΞ is acute. 
 So if we make Ζ center, and with radios ΒΖ draw a circle, then [that cir-
cle] will cut ΒΞ. And ΝΑ will be outside of it for the angle ΖΒΞ is acute, and the 
angle ΝΑΖ is right. 
 Therefore let the circle be the circle ΒΞΟΑ .Then it cuts the section ΑΒ, 
let it cut it at Ο. 
 We join ΟΖ and draw ΟΔ tangent to the section. Then ΟΔ falls outside of 
the circle, and the minimal straight line drawn between Ο and the axis is farther 
from Α than ΟΖ, as we proved [above]. 
 And it forms a right angle with ΟΔ, as is proved in Theorem 27 of this 
Book. Therefore the angle ΔΟΖ is acute, and ΟΔ cuts the circle. But it [also] fell 
outside of it, which is impossible. Therefore ΑΖ is not equal to ΖΒ.  
 So, if possible, let ΑΖ be greater than ΖΒ. Then, when we make Ζ center, 
and with the radius ΒΖ draw a circle, the circle will cut ΑΖ. And  a part of ΒΞ will 
be inside of the circle, as we proved. And the circle will cut the section because 
it cuts ΑΖ. Let [it cut the section at Χ, and let] the circle be ΒΡΧ Ϙ. 
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 We join ΖΧ, and draw from Χ a tangent ΧΣ to the section. Then it falls in-
side the circle for the minimal straight line drawn between the axis and Χ falls 
on the side of ΧΖ farther from Α, and [hence] the angle ΖΧΣ is acute.  Therefore 
ΣΧ cuts the circle. 
 But we had proved that it falls outside of it, which is impossible. There-
fore ΑΖ is not greater than ΒΖ, and we had proved that it is not equal to it.  
Therefore it is smaller than it. 
 Then I say that of the remaining straight lines [drawn from Ζ to the sec-
tion] those drawn closer to ΑΖ are smaller than those drawn farther. 
 [Proof]. For let the tangent ΞΒ be continued to Υ. Then the angle ΖΒΞ is 
acute [hence] the angle ΥΒΖ is obtuse. So we draw from Β the perpendicular 
ΒΜ to ΒΖ, then ΒΜ falls inside of the section. We draw from Γ the tangent ΓΩ 
to the section. 
 First let ΒΖ, if that is possible, be equal to ΧΖ. Then if we describe a circle 
on the center Ζ with the radius ΖΓ, it will fall outside of ΓΩ because the angle 
ΖΓΩ is acute. But it falls inside of ΒΜ because ΒΜ is perpendicular to ΒΖ. There-
fore it cuts the section. 
 And when we joined the point at which it cuts it and Ζ with a straight line, 
the absurdity of that is proved as is was in the case of the equality of ΑΖ and 
ΖΒ. 
 Similarly too if ΖΒ is greater than ΖΓ the impossibility is proved as it was 
proved in the case of ΑΖ and ΖΒ, where ΑΖ was made greater than ΖΒ.  There-
fore ΖΑ is the smallest of the straight lines drawn from Ζ to the section ΑΒΓ, 
and of the remaining straight lines those drawn closer to it are shorter than 
those drawn farther. 
 Therefore it has been proved that, if Ζ is in the situation that there can-
not be drawn from it to the section any straight line such that the part of it cut 
off [between the axis and the section] is one of minimal straight lines, and the 
angle ΖΑΕ is acute, then the smallest of straight lines drawn from Ζ to the sec-
tion is ΑΖ, and that those [of the other straight lines] drawn closer to ΖΑ are 
shorter than those drawn farther. 
 But if a minimal straight line can be cut off from only one of straight lines 
drawn from Ζ to the section, and the angle ΖΑΕ is again acute , then it will be 
proved, in Theorem 67 of this Book, that ΑΖ is again the smallest of straight 
lines drawn from Ζ to the section, and that of the remaining straight lines those 
drawn closer to it are smaller than those drawn farther. 
 

[Proposition] 65 
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 Furthermore if we make the section the hyperbola ΑΒΓ with axis ΑΕ and 
center Δ, and take some point Ζ below the axis such that, when we join ΖΑ, the 
angle ΖΑΕ is acute and [such] that for none of straight lines drawn from Ζ to 
the section is the part of it cut off between the section and the axis one of 
minimal straight lines, then I say that ΖΑ is the shortest of straight lines drawn 
from Ζ to the section ΑΒΓ, and that of the remaining straight lines those drawn 
closer to it are shorter than those drawn farther 84. 
 [Proof]. All of minimal straight lines drawn from each of the points on the 
section ΑΒΓ to the axis ΑΕ fall on the side farther from Α than the straight line 
joining that point to Ζ for we draw from Ζ the perpendicular ΖΕ to the axis then 
ΑΕ is either equal to or greater than or smaller than the half of the latus rectum. 
 Now if it is equal to it or smaller than it, then for straight lines drawn from 
Ζ to the section ΑΒΓ, when minimal straight lines are drawn from their ends to 
the axis, they are farther from Α than those [straight lines], as is proved in 
Theorem 50 of this Book. 
 But if ΑΕ is greater than the half of the latus rectum, then we make the 
ratio ΔΘ to ΘΕ equal to the ratio of the transverse diameter to the latus rectum, 
and we imagine two straight lines ΗΔ and ΔΚ in continuous proportion between 
ΘΔ and ΔΑ, and draw from Κ the perpendicular ΚΒ to ΑΕ, And construct[the 
straight line Λ such that] the ratio Λ to ΚΒ is equal to the ratio pl.ΔΕ,ΘΚ to 
pl.ΔΚ,ΘΕ. 
 Then I say that ΖΕ is greater than Λ. 
 [Proof]. For let, if it is possible, for it not to be greater than it, then first 
let it be equal to it. Then it was proved Theorem 52 of this Book that in this 
case one can draw from Ζ a [single] straight line such that the part of it  
cut off [between the axis and the section] is one of minimal straight lines. 
But that is not so, therefore ΕΖ is not equal to Λ.  
 Similarly too it will be shown that ΖΕ is not smaller than Λ for if it were 
smaller than it, then it would be possible to draw from Ζ two straight lines such 
that the part of [each of] them cut off [between the axis and the section] is 
one of minimal straight lines, therefore ΖΕ is greater than Λ.  
 And it was proved in Theorem 52 of this Book that, when ΖΕ is greater 
than Λ, no straight line can be drawn from Ζ such that the pare of it cut off be-
tween the section and the axis is one of minimal straight lines, and that the 
minimal straight lines drawn from the ends of those straight lines are farther 
from Α than the straight lines themselves. 
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 Therefore it has been proved that for all of straight lines drawn from Ζ to 
the section, when minimal straight lines are drawn from their ends two the axis, 
then these [minimal straight lines] are farter from Α than  other straight lines. 
 And that will be proved by the method similar to that by which it was 
proved in the case of the parabola in the preceding theorem, that ΑΖ is smaller 
than all [other] straight lines drawn from Ζ to the section ΑΒΓ, and that of the 
remaining straight lines those drawn closer to it are smaller than those drawn 
farther. 
 

[Proposition] 66 
 

 Furthermore we make the section the ellipse ΑΒΓ whose major axis ΑΓ 
and center Δ, with the point Δ below the major axis, and let the angle ΖΑΓ be 
acute, and draw from center Δ the perpendicular ΔϘ to the axis, and let Ζ be a 
point such that it is not possible to draw from it to [the quadrant] ΑϘ a straight 
line such that the part of it cut off between the section and the axis is one of 
minimal straight lines, then I say that ΑΖ is the shortest of straight lines drawn 
from Ζ to [the quadrant] ΑϘ, and that of the remaining straight lines those 
drawn closer to it are shorter  than those drawn  
farther 85. 
 [Proof]. For the perpendicular drawn from Ζ to the axis falls between Α 
and Δ, for if it were possible for it to fall between Δ and Γ, then it would be pos-
sible to draw from Ζ to the section a straight line such that the part of it cut off 
between the section and the axis is one of minimal straight lines, as is proved in 
Theorem 55 of this Book, but that is not so, therefore the perpendicular does 
not fall between Δ and Γ. 
 Furthermore it does not fall on the center Δ for if it fell on the center Δ, 
when it is continued in a straight line, the part of it falling between the section 
and the axis would be one of minimal straight lines, as is proved in Theorem 11 
of this Book. Therefore it falls between Α and Δ, as the perpendicular ΖΕ. 
 Now ΑΕ is either equal to the half  of the latus rectum, or smaller than it, 
or greater than it. 
 But if it is smaller than it or equal to it, then for the straight lines drawn 
from Ζ to the section ΑϘ, no minimal straight line can be cut off from them 
[between the axis and the section], and when minimal straight lines are drawn 
from their ends to the axis, they fall on the side which is farther from Α than 
the straight lines themselves, as is proved in Theorem 50 of this Book. 
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  And if ΑΕ is greater than the half of the latus rectum, we make the ratio 
ΔΘ to ΘΕ equal to the ratio of the transverse diameter to the latus rectum, and 
take two straight lines ΗΔ and ΔΚ in continuous proportion between ΑΔ and ΔΘ, 
and draw ΗΒ at right angles [to the axis], and construct [a straight line Λ such 
that] as Λ is to ΗΒ, so pl.ΔΕ,ΘΗ is to pl.ΔΗ,ΘΕ. Then ΖΕ is either equal to Λ or 
greater than it or smaller than it. 
 Now if ΕΖ is equal to Λ, then a [single] straight line can be drawn from Ζ 
to ΑϘ such that the part of it cut off [between the axis and the section] is one 
of minimal straight lines, as is proved in Theorem 52 of this Book. But that is 
not so. 
        And if ΕΖ were smaller than Λ, then there could be drawn [from Ζ to ΑϘ] 
two straight lines such that the parts of them cut off [between the axis and the 
section] are both minimal straight lines, and if ΕΖ is greater than Λ, then no 
straight line can be drawn from Ζ to ΑϘ such that the part of it cut off [be-
tween the axis and the section] is one of minimal straight lines, and when a 
straight line is drawn from Ζ to the section ΑϘ, the minimal straight line drawn 
from its and end to the axis is farther from Α than the straight line itself, as is 
proved in Theorem 52 of this Book. 
 Thus it has been proved in every case that the minimal straight lines 
drawn from every point of the section ΑϘ to the axis are farther from Α than 
the straight lines joining those points to Ζ. 
 Next we can prove, as we did in the case of the parabola that ΑΖ is 
shorter than all [other] straight lines drawn from Ζ to the section ΑϘ, and that 
of the remaining straight lines those drawn closer to it are shorter than those 
drawn farther. 
 And the proof for that is the same for all three sections, now that we 
have proved for each of the sections that the minimal straight lines drawn from 
the section to the axis fall on the side which is farther from Α than the straight 
lines themselves. 
 

[Proposition] 67 
 

 Furthermore we make the section the parabola or the hyperbola ΑΒΓ 
whose axis ΔΕ, and let there be some point Ζ below the axis, and let the angle 
ΖΑΕ be acute,  and let there be just one straight line among those drawn from Ζ 
to the section such that the part of it cut off [between the axis and the sec-
tion] is one of minimal straight lines, then I say again that ΖΑ is the shortest of 
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straight lines drawn from Ζ to the section ΑΒΓ, and that of the remaining 
straight lines those drawn closer to it are shorter than those drawn farther 86 .  
 [Proof] . For let from Ζ to the axis perpendicular ΖΕ be drawn. Then I say 
that for all straight lines drawn from Ζ to the section ΑΒΓ, then minimal straight 
lines are drawn from their ends to the axis, these straight lines are farther from 
Α than the straight lines themselves, except for one single straight line. 
 For ΕΑ  in the cases of the parabola and the hyperbola is greater than the 
half to the latus rectum, for if it were not greater than it, then it would not be 
possible to draw from Ζ a straight line such that the part of it cut off [between 
the axis and the section] is one of minimal straight lines, as is proved in Theo-
rems 49 and 50 of this Book. Therefore ΑΕ is greater than the half to the latus 
rectum. 
 Then if the section is a parabola we cut off from ΑΕ next to Ε a straight 
line equal to the half of the latus rectum, and do the other construction as we 
did in Theorem 64 of this Book, until we find the constructed the straight line 
against which we measured ΕΖ. Then ΕΖ is equal to it for if it were smaller than 
it, then it would be possible to draw from Ζ two straight lines such that the part  
cut off from [each of] them [between the axis and the section] is one of mini-
mal straight lines, as is proved in Theorem 51 of this Book. But that is not so. 
 Therefore ΖΕ is equal to the constructed straight line.  And it was proved 
in that theorem that when that is so, then only one straight line can be drawn 
from Ζ [to the section] such that the part of it cut off is one of minimal straight 
lines, and that the minimal strait lines drawn from the ends of other straight 
lines [between Ζ and the section] are farther from Α than the straight lines 
themselves. 
 That will also be shown in the same way in this section if it is a hyperbola 
for we make the center Δ and divide ΔΕ into two parts such that the ratio of 
one to other is equal to the ratio of the transverse diameter to the latus rec-
tum, and carry out the rest of the construction as we did in Theorem 65 of this 
Book until we find the constructed straight line against which we measured ΖΕ. 
 Then in this case too, as in the case on the parabola, ΖΕ is equal to the 
found straight line. Therefore only one straight line can be drawn from Ζ [to the 
section] such that the part of it cut off [ between the axis and the section] is 
one of minimal straight lines, and for other straight lines drawn from Ζ to the 
section, when minimal straight lines are drawn from their ends to the axis, these 
[minimal] straight lines are farther from Α than the straight lines themselves, as 
is proved in Theorem 52 of this Book.  
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 And a similar was shown too in the case of the parabola. Then let the 
straight line drawn from Ζ to the section ΑΒΓ such that the part of it cut off by 
the axis is one of minimal straight lines ΖΒ. 
 We draw from Ζ to the section between Α and Β two straight lines ΖΟ and 
ΖΠ. Then we prove as we proved in Theorem 64 of this Book that ΑΖ is the 
shortest of straight lines drawn from Ζ and ending at the section between Α and 
Β, and that of the remaining straight lines such as ΖΟ and ΖΠ between those 
two points, those drawn closer to it are shorter than those drawn farther. 
 Then I say that ΖΠ is shorter than ΖΒ. For if it is not shorter than it,  
first, let it be equal to it. We draw ΖΚ [to the section between ΖΠ and ΖΒ], then 
ΖΚ is greater than ΖΠ as we proved previously. Therefore it is greater than ΖΒ. 
 So we cut off from ΖΚ a straight line ΖΦ  greater than ΖΒ but shorter 
than ΖΚ, and make Ζ center and draw a circle  with the radius ΖΦ.  Then  it will 
cut  the straight line ΚΒ and the arc ΚΒ of the section. So let it cut them as the 
circle ΦΝ [where N is on the section]. We join ΖΝ, then ΖΚ is closer than ΖΝ to 
ΑΖ. Therefore ΖΚ is smaller than ΖΝ. But ΚΝ is equal to ΖΦ.  ΖΚ is smaller than 
ΖΦ. But it was [constructed as] greater than it, that impossible. Therefore ΖΠ 
and ΖΒ are not equal. 
 Again we make, if possible, ΖΠ greater than ΖΒ, and cut off from ΖΠ the 
straight line ΖΥ greater than ΖΒ but smaller than ΖΠ. We make  Ζ center and 
draw a circle with the radius ΖΥ, then that circle  will cut the  straight line ΖΠ 
and will cut the arc ΠΒ of the section. So let it cut them as the arc ΥΙΛ, we join 
ΖΙ. Then ΖΠ is smaller than ΖΙ  because it is  closer to ΑΖ. 
 But ΖΙ is equal to ΖΥ. Therefore ΖΠ is smaller than ΖΥ, but that is impos-
sible. Therefore ΖΠ is not greater than ΖΒ.  
 And we had [already] proved that  it is not equal to it. Therefore it is 
smaller than it. 
 Thus it has been proved that all straight lines drawn from Ζ to [the arc] 
ΑΒ are shorter than ΖΒ. 
 Again we draw Ζι and ΖΩ in the remaining arc  ΒΓ of the section, on the 
other side of ΖΒ. Then I say that ΖΒ is smaller than Ζι , and that Ζι is smaller 
than ΖΩ. 
 [Proof]. For let the tangents ιΨ and ΩΧ to the section  be drawn. Then 
the angles ΖιΨ and ΖΩΧ are obtuse because the minimal straight lines 
drawn from ι and Ω to the axis are farther from Α than straight lines drawn from 
their vertices to Ζ, each [being farther from Α] than its  corresponding [straight 
line]. 
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 Therefore we draw from ι the perpendicular  ιΣ to Ζι then it falls inside of 
the section. Then from that we can prove, as we proved in Theorem 64 of this 
Book that ιΖ is shorter than ΖΩ. 
 Similarly of the straight lines drawn from Ζ on the other side of ΖΒ all of 
those drawn closer to Α are smaller than those drawn farther. 
 And I say that ΖΒ is the shortest of them. 
 [Proof]. The axis  cuts off from ΖΒ a minimal straight line. Therefore the 
angle between the tangent drawn from Β and ΖΒ is right. 
 First we make, if possible, ΖΒ equal to Ζι , and draw ΖΡ between them. 
Then ΖΡ is smaller than Ζι because it is closer to ΑΖ. Therefore ΖΡ is smaller 
than ΖΒ. 
 We make ΖΞ [on ΖΒ] smaller than ΖΒ but greater than ΖΡ, and make Ζ 
center, and draw a circle with the radius ΖΞ, then it will cut ΒΡ between Β and Ρ. 
Let the circle be ΜΤΞ, and let it cut it at Τ. We join ΖΤ. Then ΖΤ is smaller ΖΡ 
because it is closer to ΑΖ. 
 But ΖΤ is equal to ΖΜ. Therefore ΖΜ is smaller than ΖΡ. But it is [also ] 
greater than it, which is impossible. Therefore Ζι is not equal to ΖΒ. 
 Therefore, if possible, let it be smaller than it. We make ΖϘ [on ΖΒ] 
greater than Ζι but smaller than ΖΒ. Therefore when we make Ζ center and draw 
a circle with the radius ΖϘ, it will cut the arc ΒΙ of the section let it cut it at Γ, 
and let it be the circle  ϘςΘ.  We join ςΖ. Then ςΖ is smaller than Ζι because it is 
closer to ΑΖ. 
 But Ζς is equal to ΖΘ. Therefore ΖΘ is smaller than Ζι . But it is [also] 
greater than it, which is impossible. Therefore Ζι is not smaller than ΖΒ. 
And we had [already] proved that it is not equal to it. Therefore it is greater 
than it . Therefore ΒΖ is the shortest of straight lines drawn from Ζ to the arc 
ΒΓ of the section. 
 Thus it has been proved from what we said, that ΑΖ is shorter than all 
straight lines drawn from Ζ to ΑΒΓ, and that of the remaining straight lines 
those drawn closer to it are shorter than those drawn farther. 
 

[Proposition] 68 
 

 If ΑΒ is the parabola whose axis ΒΓ, and ΑΔ and ΔΕ are the tangents to 
the section [where Ε is closer to the vertex Β than Α], then  ΕΔ is smaller than 
ΔΑ 87 .  
 [Proof]. For let  ΑΕ be joined and from Δ the straight line ΔΗ [meeting 
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ΑΕ at  Η] parallel to ΒΓ be drawn. Then ΑΗ is equal to ΕΗ, as is proved in Theo-
rem 30 of Book II . We draw from Α the perpendicular ΑΓ to the axis.  Then the 
angle ΑΘΔ is right, therefore the angle ΑΗΔ is obtuse. And ΔΗ is common to the 
triangles ΑΔΗ and ΕΔΗ. Therefore the sides ΑΗ and ΗΔ are [respectively] equal 
to the sides ΕΗ and ΗΔ. And the angle ΕΗΔ is smaller than the angle ΑΗΔ.  
Therefore the base ΕΔ is smaller than the base ΑΔ. 
 

[Proposition] 69 
 

 If there is the hyperbola ΑΒ whose axis ΔΕ and center Ε, and two tangents 
to it ΖΗ and ΗΑ [where Ζ is closer to the vertex Β], ΖΗ is smaller than ΗΑ 88. 
 [Proof]. For let ΒΗ is joined and continued in a straight line two [meet ΑΖ 
at] Γ, and  ΑΓΖ be joined. Then ΑΓ is equal to ΓΖ, as is proved in Theorem 30 of 
Book II . Therefore we draw the perpendicular ΑΘΔ, and continue ΕΓ to [meet it 
at] Θ. Then the angle ΑΔΕ is right, and the angle ΑΘΕ is greater than the angle 
ΑΔΕ therefore the angle ΑΘΕ is obtuse, and the angle ΗΓΑ is obtuse.  Therefore 
the angle ΗΓΖ is smaller than the angle ΗΓΑ. And ΑΓ is equal to ΓΖ, and ΓΗ is 
common to the triangles ΑΓΗ and ΖΓΗ. Therefore the base ΖΗ is smaller than 
the base ΗΑ. 

[Proposition] 70 
 

 If there is the ellipse ΑΒΓΔ whose major axis ΑΓ and minor [axis] ΒΔ, and 
there are drawn between Β and Γ on one of the quadrants of the section, and 
two tangents  ΡΗ and ΘΗ to the section, then the closer of  these two to the 
minor axis is greater than the farther 89. 
 [Proof]. For let ΘΡ be joined, and ΗΖ be drawn from Η to the center Ζ 
[cutting ΘΡ at Ε]. Then ΡΕ is equal to ΕΘ, as is proved in Theorem 30 of  
Book II. And ΕΡ is closer to ΖΒ, the half of the minor axis, than ΖΘ , and ΖΘ is 
closer to ΖΓ, the half of the major axis. Therefore ΖΘ is greater than ΖΡ. 
 And ΕΘ and ΕΖ are [respectively] equal to ΡΕ and ΕΖ. Therefore the angle 
ΘΕΖ is greater than the angle ΡΕΖ, and the angle ΡΕΗ is greater than the ΘΕΗ. 
And ΡΕ and ΕΗ are [respectively] equal to ΘΕ and ΕΗ. Therefore the base ΡΗ is 
greater than the base ΘΗ. 
 

[Proposition] 71 
 

 If ΑΒΓ is the ellipse whose major axis ΑΓ and minor axis ΒΗ [and center 
Δ], and ΧΕ and ΘΦ are perpendiculars to the major axis, ΧΕ being greater than   
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ΦΘ, and ΧΥ and ΘΥ are tangent to the section, and it is evident that they will 
meet each because of that we said in Theorem 27 of Book II, then ΧΥ is greater 
than ΘΥ 90. 
 [Proof]. For let ΘΚΧ and ΔΚΥ be joined, and let ΧΕ be continued to [meet 
the section at] Λ, and let ΛΔ be joined and continued to [meet the section at] 
Ο. Then ΛΔ is equal to ΔΟ, as is proved in Theorem 30 of Book I . 
 And ΛΕ is equal to ΕΧ, and ΔΕ is a perpendicular to ΛΧ. Therefore ΛΔ is 
equal to ΔΧ. 
 But ΛΔ was [shown to be] equal to ΔΟ. Therefore ΔΧ is equal to ΔΟ. 
         We join ΟΧ, then it is parallel to  ΕΦ. And when we draw the   perpendicu-
lar ΟΠ [to the major axis],  it is also parallel to ΧΕ, therefore it is equal to it. 
 But ΧΕ  was [assumed] greater than ΘΦ. Therefore ΟΠ is greater than 
ΘΦ. Therefore ΔΘ is closer to [the half of the major axis] ΓΔ than ΔΟ. Therefore 
ΔΘ is greater than ΔΟ, as is proved in Theorem 11 of this Book. 
 And we had proved that  ΔΟ is equal to ΔΧ. Therefore ΔΘ is greater than 
ΔΧ. 
 But ΘΚ is equal to ΚΧ as is proved in Theorem 30 of Book II. Therefore 
the angle ΔΚΘ is greater than the angle ΔΚΧ, and the angle ΥΚΧ is greater than 
the angle ΥΚΘ. And the sides ΧΚ and ΚΥ are [respectively] equal to the sides 
ΘΚ and ΚΥ. Therefore the base ΧΥ is greater than the base ΘΥ. 
 

[Proposition] 72 
 

 If a point is taken below the axis of a parabola or a hyperbola, and it is 
possible to draw from it two straight lines such that the part which the axis cuts 
off from each of them is one of minimal straight lines, then the closer of those 
two straight lines to the vertex of the section is greater than all [other] straight 
lines drawn from that point to the arc of the section from the vertex of the sec-
tion to the other, second, straight line, and of the remaining straight lines drawn 
to that arc on both sides those drawn closer to it are greater than those drawn 
farther, and second straight line is smaller than all straight lines drawn from the 
point to the remaining [part]  on that side of the section, that is the comple-
ment of the first arc on that side, and of the remaining straight lines drawn to 
that other [complementary] arc those drawn closer to it are smaller than those 
drawn farther 91. 
 Let the section be ΑΒΓ with the axis ΓΕ, and the point Δ below it, and two 
straight lines ΔΑ and ΔΒ drawn from it to the section such that the parts that 
cuts off them are two minimal straight lines. 
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 I say that ΔΒ is greater than all [other straight lines drawn from Δ to the 
arc] ΓΒΑ, and that those [straight lines] on both sides, which are closer to ΔΒ 
are greater than those drawn farther, and that ΔΑ is smaller than all straight 
lines drawn from Δ to ΑΡ [where Ρ is an arbitrary point on the other side of Α 
from Β], and that of those straight lines those drawn closer to ΔΑ are smaller 
than those drawn farther. 
 [Proof]. For let from Δ the perpendicular ΔΕ to ΓΕ be drawn.  We con-
struct  against  the straight line  which  we measure ΔΕ as we constructed it in 
Theorems 64 and 65 of this Book. Then ΔΕ is smaller than that straight line for 
if it were greater than it, it would not be possible to draw from Δ a straight line 
such that the part of it cut off [between the axis and the section] is one of 
minimal straight lines, and if it were equal to it, then it would be possible to 
draw only one straight line [of that kind], as is proved in Theorems 51 and 52 
of this Book. 
 Therefore since ΔΕ is smaller than the constructed straight line, then only 
two straight lines can be drawn from it such that the part of [each of]  
them cut off is one of minimal straight lines, and the minimal straight lines 
drawn from the ends of the straight lines between ΔΑ and ΔΒ are closer to Α 
than the straight lines themselves, but as for minimal straight lines drawn from 
the ends of the remaining straight lines, they are farther [from the vertex], as is 
proved in Theorems 51 and 52 of this Book. 
 Now as to [the statement] that ΔΒ is greater than all [other] straight 
lines drawn from Δ to [the arc] ΓΒ, which will be proved as we proved it in Theo-
rem 64 of this Book. 
 And similarly it will be proved that of those straight lines which are on the 
side of Γ [from Β] those drawn closer to ΔΒ are greater than those drawn far-
ther. 
 But as to [the statement] that ΔΒ is the greatest of the straight lines 
drawn [from Δ] to [the arc] ΑΒ, and that of those straight lines drawn closer to 
it are greater than those drawn farther, that will be proved as follows. We draw 
ΔΜ and ΔΝ [between ΔΒ and ΔΑ] and draw from Β and Μ tangents ΒΞ and ΧΜΘ 
to the section. Then ΒΠ  is one of minimal straight lines, and ΒΞ is tangent to 
the section, so the angle ΞΒΠ is right, as is proved in Theorems 27 and 28 of 
this Book,  and the angle ΞΜΔ is obtuse because the minimal straight line drawn 
from Μ to [the axis] ΓΕ is closer to Γ than ΜΔ, as is proved in Theorems 51 and 
52 of this Book. And [thus] the angle ΞΒΔ is right, and the angle ΞΜΔ is obtuse. 
Therefore the sum  of sq.ΞΒ and sq.ΒΔ is greater than the sum of sq.ΞΜ and 
sq.ΜΔ. 
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 But ΞΒ is smaller than ΞΜ, as is proved in Theorems 68 and 69 of this 
Book. Therefore  ΒΔ is greater than ΔΜ. 
 Similarly too it will be proved that ΜΔ is greater than ΔΝ because the an-
gle ΘΜΔ is acute, and, when we make ΝΘ tangent the angle ΘΝΔ is obtuse. 
 Similarly also it will be proved that ΝΔ is greater than ΔΛ. 
 Therefore ΔΒ is greater than all [other] straight lines drawn from Δ to the 
arc  ΑΓ of the section, and of those straight lines drawn closer to it are greater 
than those drawn farther. 
 Now as to [the statement] that ΔΑ is smaller than all straight lines drawn 
from Δ to [the arc] ΑΡ, which will be proved by a method like we followed in 
Theorem 64 of this Book. 
 And similarly too it will be proved that of straight lines drawn [from Δ] to  
ΑΡ those [straight lines] drawn closer to ΑΔ are smaller than those drawn far-
ther. 
 

[Proposition] 73 
  

 If a point is taken below the major or two axes of an ellipse not on the 
continuation of the minor axis,  and of straight lines drawn from that point to 
the section only one can have cut off from it [between the major axis and the 
section] one of minimal straight lines, then only that [minimal] straight line is 
greater than  all other straight lines [drawn from that point to the section], and 
of the remaining straight lines those drawn closer to it are greaten than those 
drawn farther, and the shortest on straight lines drawn from that point to that 
half of the section to which the greatest straight line is drawn is the straight 
line joining that point and the vertex of the section adjacent to that point 92. 
 Let there be the ellipse ΑΒΓ whose [major] axis ΑΓ and center Δ. We draw 
through Δ the perpendicular ΒΔΕ to the axis, and take below the axis the point 
Ζ, let Ζ be a point such that only one straight line can be drawn from it to ΑΒΓ 
such that the part of it which the axis ΑΓ cuts off is one of minimal straight 
lines. 
 Now concerning this straight line from which a minimal straight line is cut 
off, since no other straight line can be drawn from that point to the section 
such that the axis cuts from it one of minimal straight lines, but it is [always] 
possible for us to draw from Ζ [just one] straight line such that the part of it 
cut off by the axis is one of minimal straight lines, provided that it cuts the 
other one of two halves of the axis, that is to say the half on which the perpen-
dicular drawn from Ζ [to the axis] does not fall, as is proved in Theorem 55 of 
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this Book, Therefore the straight line drawn from Ζ to ΑΒΓ such that the part 
cut off from it is one of minimal straight lines cuts ΓΔ. 

So let that straight line be ΖΗΘ, we join ΖΑ. 
 Then I say that ΖΘ is the greatest of straight lines drawn from Ζ to ΑΒΓ, 
and that of straight lines on either side of it those drawn closer to it are greater 
than those drawn farther,  and that the shortest of all them is ΖΑ.  
 [Proof]. The section ΑΒΓ is the ellipse, and Ζ has been taken below its 
major axis, being a point such that only  one straight line can be drawn from it 
to the section such that a minimal straight line can be cut off from it.  
 Now it has been proved in Theorem 57 of this Book that, when that is the 
case, the remaining minimal straight lines drawn from a point on the section to 
the axis, whatever point that may be, are farther from Α or from Γ, than the 
straight lines joining that point to Ζ, and that can be proved for any of straight 
lines whether they are farther from Α, or from Γ. So we draw some straight lines  
ΖΚ, ΖΛ, and ΖΜ from Ζ to the section [where Κ and Λ are on ΑΒ, and Μ is on 
ΒΘ], and draw from Α a tangent ΑΞ to the section, then the angle ΖΑΞ is ob-
tuse. So we draw from Α the perpendicular ΑΟ to ΑΖ, then it falls in side of the 
section, as is proved in Theorem 32 of Book I. 
 We draw from Κ the tangent ΠΚΡ to the section. Then the minimal 
straight line drawn from Κ to the axis is farther from Α than ΚΖ, as is proved in 
Theorem 57 of this Book. Therefore the angle ΠΚΖ is acute. But the angle ΟΑΖ 
was [made] right . So we can prove as we proved in Theorem 64 of this Book 
by drawing the perpendicular [to ΖΚ] from Κ, that ΑΖ is not greater than ΖΚ, 
and not equal to it. Therefore ΑΖ is smaller than ΖΚ. 
 Furthermore ΠΚΡ is tangent to the section, and the angle ΡΚΖ is obtuse, 
so we draw from Κ the perpendicular ΚϘ to ΚΖ. Then it falls in side of the sec-
tion, since no straight line can fall between the tangent and the section, as is 
proved in Theorem 32 of Book I. 
 We also draw through Λ the tangent ΤΛΥ to the section. Then the minimal 
straight line drawn from Λ is farther from Α than ΛΖ, as is proved in Theorem 57 
of this Book. Therefore the angle ΤΛΖ is acute. So again it can be proved as it 
was proved in Theorem 64 of this Book that ΖΚ is smaller than ΖΛ. 
 Furthermore we join ΖΒ and draw through Β the tangent ΧΒΨ to the sec-
tion, then the angle ΧΒΔ is right, and the angle ΧΒΖ is acute. And therefore  ΛΖ 
is smaller than ΖΒ, as is proved in Theorem 64 of this Book. 
 I also say that ΖΒ is shorter than ΖΜ for we draw through Μ the tangent 
ΨΜΩ to the section. Then since ΑΒΓ is an ellipse, and the perpendicular ΒΔΕ to 
its axis, has been drawn through its center, and ΒΨ and ΨΜ are tangents, then 
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ΒΨ is greater than ΨΜ, as is proved in Theorem 70 of this Book.  But the sum 
of sq.ΨΒ and sq.ΒΖ is smaller than the sum of sq.ΖΜ and sq.ΜΨ because the 
angle ΨΒΖ is obtuse, and the angle ΨΜΖ is acute.  Therefore ΖΒ is smaller than 
ΖΜ. 
 Similarly too it will be proved that ΖΜ is smaller than ΖΝ by drawing  
[the tangent] ΩΝΙ. 
 So it has been proved that of these straight lines those drawn closer 
to Θ are greater than those drawn farther. 
 Now I say that ΘΖ is greater than ΖΝ. We draw ΘΙ tangent to the section. 
Then the angle ΙΘΖ is right, as is proved in Theorem 28 of this Book, and the 
angle ΙΝΖ is obtuse, and ΝΙ is greater than ΙΘ , as is proved in Theorem 71 of 
this Book. Therefore ΘΖ is greater than ΖΝ. Therefore ΘΖ is the greatest of 
straight lines drawn from Ζ to [the arc] ΑΘ, and of these straight lines those 
drawn closer to it are greater than those drawn farther,  
and ΛΖ is the shortest of them. 
 So we draw Ζι ,Ζζ and ΖΓ to [the arc] ΘΓ, and draw from Γ the tangent 
Go to the section, and Γ� perpendicular to ΓΖ. Then it falls in side of the sec-
tion, as is proved in Theorem 32 of Book I . 
 So we draw from ζ the tangent ζΦ to the section. Then the minimal 
straight line drawn from ζ to the axis is farther from Γ than ζΖ, therefore the 
angle ΦζΖ is acute. Hence it will be proved that ΖΓ is smaller than Ζζ , and we 
will prove as we  proved in Theorem 64 of this Book that of straight lines drawn 
from Ζ to the section between ΖΓ and ΖΘ those drawn closer to ΖΓ are shorter 
than those drawn farter. Therefore Ζζ is smaller than Ζι. 
 Then I say that Ζι is smaller than ΖΘ. 
     [Proof]. If it is not smaller than it, then it is equal to it or greater than it.  
 So it possible let it be greater than it. We make ΖΣ greater than ΖΘ and 
smaller than Ζι .Then when we make Ζ center, and draw a circle with the radius 
ΖΣ, then it will cut the arc Θι of the section, let it cut it at the point α, as the 
circle Σαβ . We join Ζα, then Ζα is farther from ΖΓ than Ζι . Therefore Ζα is 
greater than Ζι. 
 But Ζα is equal to Ζβ, therefore Ζβ is greater than Ζαι. But it is [also] 
smaller than it, that is impossible. So Ζι is not greater than ΖΘ. 
 So, if possible, let it be equal to it. We draw between these two straight 
lines Ζγ. Then Ζγ is greater than Ζι, therefore Ζγ is greater than ΖΘ. So we make 
Ζδ greater than ΖΘ and smaller than Ζγ. Then when we make Ζ center, and draw 
a circle δεσ,  with the radius Ζδ it will cut the arc Θγ of the section, let it cut it 
at ε. We join Ζε. Then Ζε is greater  than because it is farther from ΖΓ. 
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 But Ζε is equal to Ζδ, therefore Ζδ is greater than Ζγ. But it is [also] 
smaller than it, which is impossible. Therefore Ζι is greater than ΖΘ. 
 So ΖΘ is the greatest of straight lines drawn from Ζ to the section ΑΒΓ, 
and those [straight lines] drawn closer to it are greater than those drawn farter,  
and ΖΓ is the shortest of straight lines drawn from Ζ to [the arc] ΓΘ. But ΖΓ is 
greater than ΖΑ. 
 Therefore ΖΑ is the shortest of straight lines drawn from Ζ to the section 
ΑΒΓ, and the greatest of them is ΖΘ, and those [straight lines] drawn closer to 
it are greater than those drawn farther. 
 

 [Proposition] 74 
 

 If a point is taken below the major of the axes of an ellipse, and it is pos-
sible for us to draw from that point to the arc of the section opposite to it just 
two straight lines such that the parts cut off from them [by the axis] are mini-
mal straight lines, then the greatest of straight lines drawn from that point to 
that side of the section is that one of two straight lines from each of which a 
minimal straight line can be cut off which meets the minor axis, and of straight 
lines on either side of it those drawn closer to it are greater than those drawn 
farther, and the shortest of those straight lines is the straight line drawn from 
that point to that one of two vertices of the section which is closer to it 93. 
 Let the ellipse be ΑΒΓ whose major axis ΑΓ, and let there be a point Ζ be-
low the major axis, and let the center of the section be Δ. 
 We draw through Δ the perpendicular ΒΔΕ to the axis. Let it be possible 
for us to draw from Ζ just two straight lines such that the parts of them cut off 
between ΑΒΓ and the axis of the section are minimal straight lines, let those 
two straight lines which we stated to be drawn from Ζ be ΖΗ and ΖΘ, 
and let there be no other straight line apart from them which can be drawn from 
it so that the part of it cut off [by the axis] is one of minimal straight lines. 
 Then I say that ΖΘ which cuts the minor axis is the greatest of all straight 
lines drawn from Ζ to the section ΑΒΓ, and that [for straight lines] on both 
sides of it those drawn closer two ΖΘ are greater than those drawn farther, and 
that ΖΑ is the shortest of mentioned those straight lines. 
 [Proof]. For let from Ζ the perpendicular ΖΝ to the axis be drawn. Then it 
is evident that ΖΝ does not fall on the center for if it were to fall on the center, 
then it would be impossible to draw from Ζ a straight line such that the part of 
it which the axis cuts off is one of minimal straight lines except for  perpendicu-
lar ΖΝ alone [when continued to  meet the section], or [else] would be possible 
to draw two straight lines besides it such that the part of each of them cut off 
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[by the axis] is one of minimal straight lines, as is proved in Theorems 53 and 
54 of this Book. But that is not the case [here by hypothesis]. 
 So let the perpendicular ΖΝ fall between Α and Δ. Then ΑΝ is greater than 
the half of the latus rectum for, if it were not greater than it, then it would not 
be possible to draw from Ζ a straight line between  Α and Β such that the part 
of it cut off [by the axis] is one of minimal straight lines, as is proved in Theo-
rem 50 of this Book. Therefore ΑΝ, as we said, is greater than the half of the 
latus rectum. 
 So we make the ratio ΔΚ to ΚΝ equal to the ratio of the transverse di-
ameter to the latus rectum, and take two mean proportionals between ΑΔ and 
ΔΚ, and construct the perpendicular as we constructed it in Theorem 64 of this 
Book, and do the rest of what we did so as to generate the straight line against 
which we measure ΖΝ. 
 Then ΖΝ is equal to that  generated straight line for if it were greater than 
it, then it would not be possible to draw from Ζ to ΑΒ a straight line such that 
the part of it cut off [by the axis] is one of minimal straight lines, and if it were 
smaller than it, then it would be possible to draw to [the quadrant] ΑΒ two 
straight lines such that the part of them cut off [by the axis] is one of minimal 
straight lines, as is proved in Theorem 52 of this Book, and it would also be 
possible to draw from Ζ another, third, straight line to [the quadrant] ΒΓ, as is 
proved in Theorem 55 of this Book. Therefore, ΖΝ is equal to the generated 
straight line. 
 And it was proved in Theorem 52 of this Book that, when that is the case, 
then only one straight line can be drawn from Ζ to [the quadrant] ΑΒ such that 
the part of it cut off [by the axis] is one of minimal straight lines, and that the 
minimal straight lines drawn from the ends of the remaining straight lines drawn 
two ΑΒ are farther from Α than the straight lines themselves. 
 So we draw from Ζ to the section the straight lines ΖΑ, ΖΟ, and ΖΠ. Then 
it will be proved, as we proved in Theorems 72 and 73 [of this Book] that ΖΑ is 
smaller than ΖΟ, and ΖΟ is smaller than ΖΠ. 

Then I say that ΖΠ is smaller than ΖΗ for if it is not smaller than it,  let it 
be greater than it or equal to it, and, first it be equal to it. We draw between 
them ΖΥ, where ΖΥ is greater than ΖΠ, and ΖΠ is equal to ΖΗ. Therefore ΖΥ is 
greater than ΖΗ. So we cut off from ΖΥ the straight line ΖΙ shorter than ΖΥ, but 
greater than ΖΗ, make Ζ center and draw the circle ΙΛΜ with the radius ΖΙ, then 
it cuts the arc ΥΗ [of the section], Let it cut it at Λ.  We join ΖΛ. Then ΖΛ is 
greater than ΖΥ because  it is farther from ΖΑ. 
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 And ΖΛ is equal to ΖΙ, therefore ΖΙ is greater than ΖΥ. But it is [also] 
smaller than it, which is impossible. 
 In a similar way it will be proved that ΖΗ is not smaller than ΖΠ. Therefore 
it is greater than it. So ΖΗ is greatest of straight lines drawn from Ζ to [the arc] 
ΑΗ, and of these straight lines those drawn closer to it are greater than those 
drawn farther,  and the shortest of them is ΖΑ. 
 Similarly too it will be proved that ΖΒ is the greatest of straight lines 
drawn between Η and Β, and that of these straight lines those drawn closer to it 
are greater than those drawn farther, just as we proved the matter of straight 
lines drawn to [the arc] ΑΗ. 
 Then I also say that ΖΗ is the smallest of straight lines drawn to [the arc] 
ΗΒ. 
 [Proof]. For let ΖΣ be drawn [to ΗΒ]. Then, if it is possible, for ΖΣ not to 
be greater than ΖΗ, it is equal to it or smaller than it. 
 First, let it be equal to it. We draw ΖΞ between ΖΗ and ΖΣ. Then ΖΞ is 
smaller than ΖΣ, therefore ΖΞ is smaller ΖΗ. We make ΖϘ greater than ΖΞ but 
smaller than ΖΗ and make Ζ center, and draw the circle ϘΡΤ with the radius ΖϘ . 
Then it will cut the arc ΞΗ [of the section], let it cut it at Ρ. We join ΖΡ.  Then 
ΖΡ is smaller than ΖΞ because it is farther from ΖΒ, and ΖΡ is equal to ΖΤ. There-
fore ΖΤ is smaller ΖΞ . But it is [also] greater than it, which is  impossible. So 
ΖΣ is not equal to ΖΗ. 
 Similarly too it will be proved that it is not greater than it. 
 Therefore ΖΒ is greater than all [other] straight lines drawn from Ζ to 
[the quadrant] ΒΑ, and of these straight lines those drawn closer to it are 
greater than those drawn farther. 
 Now ΑΒΓ is the ellipse whose major axis ΑΓ and minor axis ΒΔΕ,  with Ζ 
inside of the angle ΑΔΕ, from which ΖΘ has been drawn to the arc ΒΓ of the 
section. So it will be proved as we proved in the preceding theorem that ΖΘ is 
the greatest of straight lines drawn from Ζ to ΒΓ, and that of these straight 
lines those drawn closer to it are greater than those drawn farther. 
 And it has [already] been proved that ΖΒ is the greatest  if straight lines 
drawn to [the arc] ΑΒ, and that of these straight lines those drawn closer to it 
are greater than those drawn farther. 
 So ΖΘ is the greatest of straight lines drawn from Ζ to the section ΑΒΓ, 
and of the remaining straight lines those drawn closer to it are greater than 
those drawn farther, and ΖΑ is the smallest of them. 
 

[Proposition] 75 
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 If a point is taken below the major of two axes an ellipse, and it is possible 
to draw from it to the section three straight lines such that the parts of them 
which the axis cuts off are minimal straight lines, two of these straight lines be-
ing on that one of two sides of the minor axis on which is the point, and one 
straight line being on the opposite side, then of straight lines drawn from that 
point to the arc of the section between the midmost of three straight lines and 
that vertex of the section which is farther from the point, the greatest is that 
one of three straight lines which is drawn on the side opposite to that in which 
is the point, and those of these straight lines drawn closer to it are greater than 
those drawn farther,  but as for straight lines drawn from that point to the sec-
tion which is between the midmost of three straight lines and that vertex of the 
section which is next to the point, the greatest of them is the straight line next 
to that vertex of the section which is on the side on which is the point, and 
those of these straight lines which are closer to it are greater than those which 
are farther, and the greatest of these straight lines and [also] of other straight 
lines mentioned  previously is that one of three straight lines which is drawn to 
the side opposite to the side on which is the point 94. 
 Let there be the ellipse ΑΒΓ whose major axis ΑΓ and center Ξ. Let the 
perpendicular passing through the center be ΒΞ, and the point below the axis be 
Ε. And let there be drawn from it three straight lines ΕΗ, ΕΖ, and ΕΔ such that 
the parts cut off from them [by the axis] are minimal straight lines , two of 
these straight lines ΕΖ and ΕΔ are on the side [of the minor axis] on which is Ζ, 
and one straight line ΕΗ is on other side. 

Then I say that ΕΗ is the greatest of straight lines drawn from Ε to the 
section ΑΒΓ, and that of straight lines between Δ and Α those drawn closer to it 
on both sides are greater than those drawn farter, and that ΖΕ is the greatest 
of straight lines drawn between Γ and Δ,  and that those of these straight lines 
that are closer to it are greater than those drawn farther. 
 [Proof]. ΔΑ  and ΖΘ are minim al straight lines. So we will prove as we 
proved in the case of the parabola in Theorem 72 of this Book that ΕΖ is the 
greatest of straight lines drawn from Ε to [the arc] ΓΒ, and that of these  
straight lines those drawn closer to it are greater than those drawn farther. 
 Furthermore ΔΛ is one of minimal straight lines, and ΗΚ is also one of 
minimal straight lines. So it will be proved then, as is was proved in the preced-
ing theorem that ΕΗ is the greatest of straight lines drawn from Ε to[the arc] 
ΑΔ. 
 And I also say that ΕΗ is greater than ΕΖ. For let from Ζ, Η, and Ε the 
perpendiculars ΖΜ, ΗΝ, and ΕΟ be drawn. Then the ratio ΜΞ to ΜΘ is equal to 
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the ratio of the transverse diameter to the latus rectum as is proved in Theo-
rem 15 of this Book. 
 And likewise too the ratio ΞΝ to ΝΚ is equal to the ratio of the transverse 
diameter to the latus rectum, as is proved in Theorem 15 of this Book. There-
fore the ratio ΞΜ to ΜΘ is equal to the ratio ΞΝ to ΝΚ. 
 But the ratio ΟΜ to ΜΘ is smaller than τηε ratio ΞΜ to ΜΘ. Therefore the 
ratio ΟΜ to ΜΘ is smaller than the ratio ΞΝ to ΝΚ. Therefore the ratio ΟΜ to 
ΜΘ is much smaller than the ratio ΟΝ to ΝΚ. And dividendo the ratio ΟΘ to ΘΜ 
is smaller than the ratio ΟΚ to ΚΝ. 
 Now as for the ratio ΟΘ to ΘΜ, it is equal to the ratio ΕΟ to ΖΜ, and as 
for the ratio ΟΚ to ΚΝ, it is equal to the ratio ΕΟ to ΗΝ. Therefore the ratio ΕΟ 
to ΖΜ is smaller than the ratio ΕΟ to ΗΝ. Therefore ΖΜ is greater than ΗΝ. 
 Therefore the straight line drawn from Ζ parallel to ΑΓ is farter from Α 
than Η, let  that straight line be ΖΠ [which cuts ΞΒ at Σ]. 
 We continue the perpendicular ΕΟ to [meet ΖΠ at] Ρ. Then ΖΣ is equal to 
ΣΠ. Therefore ΡΠ is greater than ΖΡ. 
 And ΕΡ is common to the triangles ΕΡΖ and ΕΡΠ, and is a perpendicular to 
ΖΠ. Therefore ΕΠ is greater than ΕΖ. But ΕΗ is greater than ΕΠ. Therefore ΕΗ is 
greater than ΕΖ. So ΕΗ is the greatest of straight lines drawn from Ε to the sec-
tion ΑΒΓ.  
 And the situation with to straight lines drawn closer to and farter from it 
is as we declared in the enunciation. 
 

[Proposition] 76 
 

 If a perpendicular is drawn some point to the major axis of an ellipse, so 
as to fall on its center, and no other straight line can be drawn from that point 
to one of quadrants of the section which are on the opposite side of the section 
to the side in which is the point, such that the part of it cut off [by the axis] is 
one of minimal straight lines, then the greatest of straight lines drawn from that 
point to the section is that perpendicular, when continued [to meet the sec-
tion], and of the remaining straight lines [drawn from that point], those drawn 
closer to it are greater than those drawn farther 95. 
 Let the ellipse be ΑΒΓ whose major axis ΑΓ, and the taken point be Ε, and 
the perpendicular drawn from it to the center be ΕΔ, which has been continued 
to [meet the section at] Β. And let it not be possible to draw from Ε to [the 
quadrant] ΒΓ any straight line except ΒΔ such that the part of it cut off [by the 
major axis] is one of minimal straight lines. 
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 Then I say that ΕΒ is the greatest of straight lines drawn from Ε to [the 
quadrant] ΒΓ.  
 [Proof]. No straight line can be drawn from Ε to the section between Β 
and Γ such that the part of it cut off is one of minimal straight lines. 
 And [so] the minimal straight lines drawn from the ends of those straight 
lines are farther from Γ than the straight lines themselves, as is proved in Theo-
rem 53 of this Book. Hence it will be proved by means of the tangents, as it was 
proved in Theorem 72 of this Book, that ΕΒ is the greatest of straight lines 
drawn from Ε to the quadrant ΑΒ. 
 And similarly it will be proved that it is the greatest of straight lines 
drawn [from Ε] to the other quadrant. Therefore it is the greatest of straight 
lines drawn from Ε to the section. 
 And [it will be proved] that those of these straight lines that are closer to 
it are greater than those drawn farther. 
 

[Proposition] 77 
 

 If a perpendicular is drawn from some point to the major of two axes on 
an ellipse, so that it falls on the center, and it is possible to draw from that 
point to a quadrant of the section [one] straight line such that the part of it cut 
off by the axis is one of minimal straight lines, then that straight line is greatest 
of straight lines drawn from that point to that quadrant,  and of these straight 
lines those drawn closer to it are greater than those drawn farther 96. 
 Let the ellipse be ΑΒΓ whose major axis ΑΓ and center Δ, and the point  
taken below is Ε from which the perpendicular ΕΔ has been drawn to ΑΓ, and let 
it be possible to draw from it to ΓΒ only one straight line such that the part of 
it cut off [by the axis] is one of minimal straight lines, let that straight line be 
ΕΗΖ. 
 Then I say that ΕΖ is the greatest of straight lines drawn from Ε to 
[the quadrant] ΒΓ, and that those [straight lines] drawn closer to it on both 
sides are greater than those drawn farter. 
 [Proof]. For let ΒΔ and ΖΗ are two minimal straight lines which have been 
continued to meet at Ε. So the minimal straight lines drawn from [any] point on 
the section between Γ and Ζ are farter from Γ than the straight lines joining 
that point and Ε, as is proved in Theorem 46 of this Book. And the minimal 
straight lines drawn from [any] point on the section between Β and Ζ are closer 
to  Γ than the straight lines joining that point and Ε, as is proved in Theorem 46 
of this Book. And when that is the case, then it can be proved, as it was proved 
in Theorem 72 of this Book by means of the tangents, that ΕΖ is the greatest of 
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the straight lines drawn from Ε to ΒΓ, and that of these straight lines those 
drawn closer to it are greater than those drawn farther. 
 
 
 
 

BOOK SIX 
 

Preface 
Apollonius greets  Attalus 

 
 I have sent you the sixth Book of the Conics. My aim in it is to report on 
conic sections which are equal1 to each other and those unequal to each other, 
and  those unequal to each other, and on those similar to each other and dis-
similar to each other, and on segments of conic sections. In this we have enun-
ciated more than what was composed by  others among our predecessors. In 
this Book there is also how to find a section in a given right cone equal to a 
given section, and 257or to find a right cone, containing a given conics section, 
similar 2 to a given cone. What we have stated on this [subject] is fuller and 
clearer than the statements of our predecessors. Farewell. 
 

Definitions 
 

 1. Conic sections which are called equal are those which can be fit one on 
another, so that the one does not exceed the other3  Those which are said to be 
unequal are those for which that is not so. 
 2. And similar [conic section] are such that, when ordinates are drawn in 
them to fall on the axes, the ratios of the ordinates are drawn in them to the 
lengths they cut off from the vertex of the section are equal  to one  another, 
while the ratios to each other of the portions which the ordinates cut off from 
the axes are equal ratios 4. Sections that are dissimilar are those in which what 
we stated above does not occur. 
 3. The line that subtends a segment of the circumference of a circle or of 
a conic section is called the base of that segment 5 . 
 4. The line that bisects all the lines drawn in that segment parallel to the 
base is called the diameter to that segment 6 . 
 5. And the point on the section from which the diameter is drawn is called 
the vertex of the segment 7. 
 6. Segments that are called equal from their bases up are those that can 
be applied, one to another, so that one does not exceed the other. And seg-
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ment that are called unequal are those for which what we stated is not the 
case. 
 7.And segments that are called similar are those in which the angles 
formed between their bases and their diameters are equal, and for which, an 
equal number of lines having been drawn in each of them parallel to their base, 
the ratios of these  lines, and also the ratio of each base, to the ratios of these 
lines, and also the ratio of each base to the lengths which they cut off from the 
diameter from the vertex of the section are equal for every segment similarly 
the ratio of the part cut off from the diameter of one to the part cut off from 
the diameter of the other. 
 8.A conic section is said to the be placed in a cone, or a cone is said to 
contain a conic section, when the whole of the section is in the surface bound-
ing the cone between its vertex and its base, or in that surface after it has been 
produced beyond the base, so that the whole of the section is in the surface 
below the base, or else some of the section is in this surface and some in the 
other surface. 
 9. Right cones that are said to be similar are those for which the ratios of 
their axes to the diameters of their bases are equal. 
 10.The eidos that I call the eidos of the section corresponding to the axis 
or to the diameter is that [eidos] under the axis or diameter together with the 
latus rectum 8. 
 

[Proposition] 1 
 

 Parabolas in which the latera recta which are perpendiculars to the axes 
are equal, them selves equal, and if parabolas are equal, their latera recta are 
equal 9.  
 Let there be two parabolas whose axes ΑΔ and ΖΘ and equal latera recta 
ΑΕ and ΖΜ. 
 I say that these sections are equal. 
 [Proof]. When we apply the axis ΑΔ to the axis ΖΘ, then the section will 
coincide with the section so as to fit on it for if it does not fit on it, let there be 
a part of the section ΑΒ that does not fit on the section ΖΗ. We take the point 
Β on the part of it that does not coincide with ΖΗ, and draw from it [to the 
axis] the perpendicular ΒΚ, and complete the rectangular plane ΚΕ. We make ΖΛ 
equal to ΑΚ, and draw from Λ the perpendicular ΛΗ to the axis [meeting the 
section at Η], and complete the rectangular plane ΛΜ. Then ΚΑ and ΑΕ are 
equal to ΛΖ and ΖΜ each to its correspondent. 
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 Therefore the quadrangle ΚΕ is equal to the quadrangle ΛΜ. And ΚΒ is 
equal in square to the quadrangle ΕΚ, as is proved in Theorem 11 of Book I. 
 And similarly too ΛΗ is equal in square to the quadrangle ΛΜ. Therefore 
ΚΒ is equal to ΛΗ. 
 Therefore when the axis [of one section] is applied to the axis [of the 
other], ΑΚ will coincide with ΖΛ, and ΚΒ will coincide with ΛΗ, and Β will coincide 
with Η. But it was supposed not to fall on the section ΖΗ, which is impossible. 
Therefore it is impossible for the section [ΑΒ] not to be equal to the section 
[ΖΗ] 
 Furthermore we make the section [ΑΒ] equal to the section [ΖΗ], and 
make ΑΚ equal to ΖΛ, and draw the perpendiculars [to the axis] from Κ and Λ , 
and complete rectangular planes ΕΚ and ΜΛ, then the section ΑΒ will coincide 
with the section ΖΗ, and therefore the axis ΑΚ will coincide with the axis ΖΛ for 
if it does not coincide with it, the parabola ΖΗ has two axes which is impossible. 
 Therefore let it coincide with it. Then Κ will coincide with L because ΑΚ is 
equal to ΖΛ, and Β will coincide with Η. Therefore ΒΚ is equal to ΛΗ, the quad-
rangle ΕΚ  is equal to the quadrangle ΛΜ, ΑΚ is equal to ΖΛ, and ΑΕ is equal to 
ΖΜ. 
 

[Proposition] 2  
 

 If the eidoi corresponding to the transverse axes of hyperbolas of ellipses 
are equal and similar10, then the sections will be equal, and if the sections are 
equal, then the eidoi corresponding to their transverse axes are equal and simi-
lar, and their situation is similar11 . 
        Let there be two hyperbolas or ellipses ΑΒ and ΓΗ whose axes ΑΚ and ΓΘ. 
Let the eidoi corresponding to their transverse axes be equal and similar, these 
are ΔΕ and ΝΛ. 
 I say that the sections ΑΒ and ΓΗ are equal. 
 [Proof]. We apply the axis ΑΚ to the axis ΓΘ, then the section [ΑΒ] will 
coincide with the section [ΓΗ] for if that it no so, let a part of the section ΑΒ 
not coincide with the section ΓΗ we take the point Β on that part, and draw 
from it the perpendicular ΒΚ to the axis, and complete the rectangular plane ΔΖ 
We cut off from ΓΘ a segment ΓΘ equal to ΑΚ, and draw from Θ the perpen-
dicular ΘΗ to ΓΘ, and complete the rectangular plane ΝΜ. Then ΑΕ and ΑΚ are 
[respectively] equal to ΛΓ and ΓΘ. Therefore the quadrangle ΕΚ is equal to the 
quadrangle ΛΘ. 
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 Furthermore the rectangular planes ΛΜ and ΕΖ are similar and similarly 
situated because they are similar to the rectangular planes ΔΕ and ΝΛ [respec-
tively], and ΑΚ is equal to ΓΘ. Therefore the quadrangle ΕΖ is equal to the quad-
rangle ΛΜ. And the rectangular planes ΚΕ and ΘΛ were [already proved] equal. 
Therefore the quadrangle ΑΖ is equal to the quadrangle ΓΜ, and the straight 
lines equal to them in square are [respectively] ΒΚ and ΘΗ, as is proved in 
Theorems 12 and 13 of Book I. 
 Therefore when the axis is applied to the axis, ΒΚ will coincide with ΘΗ, 
and Β will coincide with Η. But it was supposed to fall on the section ΓΗ, which 
is impossible. Therefore the whole section ΑΒ will fit on the section ΓΗ. 
 Furthermore we make two sections equal, and make ΑΚ  and  ΓΘ equal, 
and draw from them the perpendiculars ΚΒ and ΘΗ, and complete [the rectan-
gular planes] ΔΕ, ΔΖ, ΝΛ, and ΝΜ, then the section ΑΒ will fit on the section ΓΗ, 
and the axis ΑΚ will coincide with the axis ΓΘ for if it did not coincide with it, 
then the hyperbola would have two axes and the ellipse three axes, which is im-
possible. Therefore ΑΚ coincides with ΓΘ, and it is equal to it. So Κ will coincide 
with Θ, and ΚΒ will coincide with ΘΗ,  and [hence] Β will coincide with Η, and ΚΒ 
will fit on ΗΘ, therefore ΚΒ is equal to ΗΘ. 
 For that reason the quadrangle ΑΖ is equal to the quadrangle ΓΜ. 
 But ΑΚ is equal to ΓΘ, therefore ΚΖ is equal to ΘΜ. 
 Furthermore we make ΑΞ equal to ΓΠ, then it will be proved, as we 
proved above, that ΞΤ is equal to ΠΧ. Therefore ΣΖ is equal to ΜΥ, and ΣΤ is 
equal to ΥΧ. Therefore the rectangular planes ΖΤ and ΜΧ are equal and similar. 
 Therefore the quadrangle ΔΕ is similar to the quadrangle ΝΛ, and also the 
quadrangle ΔΖ is similar to the quadrangle ΝΜ. But ΚΖ is equal to ΘΜ. Therefore 
ΔΚ is equal to ΝΘ. But it was [assumed] that ΑΚ is equal to ΓΘ. Therefore ΔΑ is 
equal to ΝΓ and the quadrangle ΔΕ is similar to the quadrangle ΝΛ. Therefore ΑΕ 
is equal to ΓΛ, and the quadrangle ΔΕ is equal to the quadrangle ΝΛ. And these 
are the eidoi corresponding to the axes. 
 

Porisms  
 

          If there are [a number of] parabolas, and ordinates falling on one of their 
diameters meet the diameters at equal angles, and their latera recta are equal,  
then the sections are equal, and if there are [a number of] hyperbolas or ellip-
ses, and the ordinates falling on one of their diameters meet the diameter at 
equal angles, and eidoi corresponding to those diameters are equal and similar, 
then the sections are equal 12 . 
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 That is proved as it was proved for the axes. 
 

[Proposition] 3 
 

 As for the ellipse it is evident that it cannot be equal to any of other sec-
tions because it is bounded, but they are unbounded. 
 Then I also say  that no parabola can be equal to a hyperbola 13 . 
 [Proof]. For let there be the parabola ΑΒΓ and the hyperbola ΗΙΚΝ. Then, 
if possible, let it be equal to it, and let the axes of the sections be ΒΖ and ΚΜ, 
and let the transverse axis of the hyperbola be ΚΘ, and let ΒΕ and ΒΖ be equal 
to ΚΛ and ΚΜ [respectively]. We draw from the axes the perpendiculars ΑΕ, ΔΖ,  
ΙΛ, and ΗΜ. Now the section fits on the section because it is equal to it, and 
[hence] Ε, Ζ, Α, and Δ coincide with Λ, Μ, Ι, and Η [respectively], and as ΖΒ is 
to ΕΒ, so ΔΖ is to ΑΕ, as is proved in Theorem 20 of Book I. Therefore as ΜΚ is 
to ΚΛ, so ΜΗ is to ΛΙ. But that is impossible because as sq.ΜΗ is to sq.ΙΛ, so  
pl.ΘΜΚ is to pl.ΘΛΚ, as is proved in Theorem 21 of Book I.  

Therefore the parabola is not equal the hyperbola.  
     

[Proposition] 4 
 

 If there is an ellipse and a straight line passes through its center such 
that its extremities end at the section,  then it cuts the boundary of the section  
into two equal parts. And the surface is also bisected [by it] 14 . 
 Let there be the ellipse ΑΓΒ whose center Θ, and let the straight line AB 
pass through its center. And first let ΑΒ be one of the axes of the section. 
 Then I say that the line ΑΓΒ fits on the line ΑΕΒ, when it is applied to it, 
and the surface ΑΓΒ coincides with the surface ΑΕΒ. 
 [Proof]. For let, if possible, the line ΑΓΒ not coincide wholly with the line 
ΑΕΒ. We take Γ on the part of it that does not coincide with it,  and draw from 
it the perpendicular ΓΔ to ΑΒ, and continue it to [meet the section again at] Ε. 
Then ΓΔ coincides with ΔΕ because the angles at Δ are right, and ΓΔ is equal to 
ΔΕ. Therefore Γ coincides with Ε.  
 But it had been assumed not to coincide with it, which is impossible. 
Therefore the line ΑΓΒ coincides with the line ΑΕΒ so as to fit to it, and the sur-
face ΑΓΒ will coincide with the surface ΑΕΒ. Hence the line ΑΓΒ is equal to the 
line ΑΕΒ,  and the surface ΑΓΒ to the surface ΑΕΒ. 
 

[Proposition] 5 
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 Furthermore we do not make ΑΒ one of the axes 15 . And let the axes be 
ΓΔ and ΚΛ, and we draw two perpendiculars ΑΕ and ΒΗ [to the axis], then the 
line ΓΑΔ fits on the line ΓΖΔ, as was proved in the preceding theorem, and Z co-
incides with Α, and the surface ΑΓΕ coincides with the surface  ΓΖΕ.  Further-
more [the line] ΚΓΛ coincides with [the line] ΚΔΛ, and ΕΘ coincides with ΘΗ, 
and ΕΖ with ΒΗ because ΕΘ is equal to ΘΗ, and ΕΖ to BH, and the surface ΓΕΖ 
coincides with the surface ΔΗΒ. Therefore the surface ΑΓΕ coincides with the 
surface ΒΔΗ. So it is equal to it, and [hence] the line ΑΓ is equal to the line ΔΒ. 
 Furthermore [Δ]ΑΕΘ is equal to [Δ]ΘΒΗ. Therefore [the surface] ΑΓΘ is 
equal to [the surface] ΘΒΔ, hence the remainder [line] ΑΚ is equal to the re-
mainder [line] ΒΛ. And [hence] the line ΑΚΔ is equal to the line ΓΛΒ. Therefore 
the whole surface ΑΚΔΒ is equal to the whole surface ΑΓΛΒ, and the line ΑΚΔΒ 
is equal to the line ΑΓΛΒ. 
 

[Proposition] 6 
 

 If there is a conic section, and a part of it coincides with another part of 
another section so as to fit on it, then the [first] section is equal to 
the[second] section 16 . 
 Let the arc ΑΒ of the section ΑΒ, when applied to the arc ΓΔ of the sec-
tion ΓΔΕ fit on it. I say that the section ΑΒ is equal to the section ΓΔΕ. 
 [Proof]. For let, if that is not so, then the part ΑΒ coincide with the part 
ΓΔ, and let the remainder of the section not coincide with the other section, but 
let them be as the sections ΔΓΜ and ΔΓΝ. We take the point Θ on ΓΜ, and 
join it to Δ, and draw in the section ΓΔΕ the diameter ΚΛ bisecting ΔΘ. Then the 
tangent to the section ΓΔΕ at Κ is parallel to ΔΘ, and the diameter ΚΛ bisects 
the straight lines parallel to ΔΘ. Therefore we draw from Γ the straight line ΓΖ 
parallel to ΔΘ. Then ΚΛ bisects it, and it is parallel to the tangent to the section 
ΔΓΜ at Κ. And that [tangent] is also the tangent to the section ΔΓΝ. Therefore 
ΚΛ is a diameter to the section ΑΓΝ, as is proved in Theorem 7 of Book II. 
Therefore it bisects the diameter ΔΝ at L. But ΔΘ was [assumed to be] bisected 
at [the same point] Λ, which is impossible. Therefore the whole section ΑΒ co-
incides with the section ΓΔΕ so as to fit on it, therefore it is equal to it. 
 

[Proposition] 7 
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The perpendiculars drawn from a parabola or a hyperbola to its axis, and 
continued to the other side, cut off from the section on both sides of the axis 
the segments which, when one is applied to an other fit so as not to exceed or 
fall short of it, but do not fit on any other part of the section if placed on it17 . 
 Let there be the parabola or the hyperbola ΓΒΑ whose axis ΓΗ. We take 
on the section two points Β and Α, and draw from them two perpendiculars to 
ΓΗ, and continue them to the other side of the section, these are ΒΖΔ and ΑΗΕ. 
Let them cut off from the section two segments ΒΓΔ and ΑΓΕ. I say that the 
line ΒΓ fits on the line ΓΔ, and the line ΒΑ on the line ΔΕ and the surface ΑΓΗ on 
the surface ΗΓΕ, and the arc ΑΒΓ  of the section on the arc ΓΔΕ. 
 [Proof]. The proof of that is like the preceding proofs for all perpendicu-
lars drawn from the arc ΑΒΓ to the axis ΓΗ are equal in square to figures that 
are equal to those figures to which the perpendiculars drawn from the arc ΓΔΕ 
to the axis ΓΗ, being continuous with those perpendiculars, are equal in square. 
Therefore ΒΖ is equal to ΖΔ, and ΑΗ is equal to ΕΗ, and the angles at Ζ and Η 
are right. 
 Therefore the arc ΓΒ, when applied to the arc ΓΔ, will fit on it, and the arc 
ΑΒ will coincide with the arc ΔΕ, and the [corresponding] surfaces will coincide 
with the surfaces. 
 Therefore let the arc ΘΚ be another arc which is not cut off by these two 
perpendiculars. Then I say that the arc ΔΕ, if applied to it, will not fit on it.  
 [Proof]. For let if that it not so, and if possible, it fit. Then, when ΔΕ is 
applied to ΚΘ so as to fit on it, the line ΓΔ will coincide with the arc, which is 
adjacent to the arc ΘΚ, as is proved in the preceding theorem. And the point Γ 
of the arc ΓΔΕ will fall on a place different from its position on the arc ΚΘΓ be-
cause the arc ΚΘΓ is not equal to the arc ΓΔΕ, and the axis ΓΗ will fall on a 
place different from the position it has [now]. Therefore the parabola or the hy-
perbola has two axes, which is impossible. So the arc ΔΕ does not coincide with 
the arc ΔΚ. 
 

[Proposition] 8 
 

 In every ellipse perpendiculars which are drawn to the axis and continued 
in a straight line to the other side of it cut off from the section on either side of 
the axis arcs which fit when one is applied to another, and if they are applied to 
the arcs cut off by the perpendiculars whose distance from the center towards 
other side is equal to the distance of the perpendiculars drawn [above], they 
will fit on them, but will not fit on [any] other arc of the section 18 . 
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 Let there be the ellipse ΑΓΔΒ whose axis ΑΒ and ΚΛ. Let there be drawn 
in it two perpendiculars to ΑΒ, and let them be continued in a straight line to 
both sides [of the section], let them be ΓΕ and ΔΖ. And let them cut off from it 
two arcs ΓΔ and ΕΖ. And let there also be drawn in the section two other per-
pendiculars of this kind whose distance from the center is [respectively] equal 
to the distance of those two perpendiculars, these are ΜΞ and ΝΘ . 
 Now as to [the statement] that when one of ΓΔ and ΕΖ is applied to the 
other, it will fit on it, which will be proved as it was proved in the preceding 
theorem. 
 And  similarly it will be proved that ΜΝ will fit on ΞΘ. And because the 
surface ΚΑΛ, when applied to the surface ΚΒΛ, lies on it, as is proved in Theo-
rem 4 of this Book, ΓΕ will coincide with ΝΘ because the distance of each from 
the center is one and the same. 
 And ΔΖ will coincide with ΜΞ, and [hence] the arc ΓΔ will coincide with the 
arc ΜΝ.Therefore it will fit on the arc ΞΘ because one of them fits on other. 
 And likewise too the arc ΕΖ [will fit on ΞΘ and ΜΝ]. 
 Therefore let there be another arc ΠΡ of the section, apart from these 
four. Then I say  that none of these arc will fit on it. 
 [Proof]. For let if possible the arc ΜΝ fit on it. Then it will necessarily fol-
low, as it did in the preceding theorems, that the ellipse would have more than 
two axes, which is impossible. Therefore ΜΝ will not fit on ΠΡ. 
 

[Proposition] 9 
 

 In equal sections those parts of them at equal distances from their verti-
ces will fit one on another, and those [parts] not at  equal distances from 
their vertices will not fit one on another 19 . 
 Let there be two equal sections with axes ΓΔ and ΚΛ. Let the distance of 
the arc ΑΒ from Γ be equal to the distance of the arc ΕΗ from Κ. 
 Then I say that ΑΒ will fit on ΕΗ. 
 [Proof]. Then the section ΓΑ is applied to the section ΚΕ, the point Β will 
coincide with H because the distance of each from the vertices of two sections 
is equal. And A will coincide with Ε, and [hence] the section ΑΒ will coincide 
with the section ΕΗ. Then I say that it will not coincide with any other arc so as 
to fit on it. 
 [Proof]. For let, if possible, it coincide with the arc ΖΘ. Now we have 
proved that it fits on ΕΗ. Therefore the arc ΖΘ will fit on the arc ΕΗ. But the 
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arcs ΖΘ and ΕΗ are not the arcs cut off by two perpendiculars, and their dis-
tances from the vertices are not equal. That is impossible as is proved in two 
preceding theorems two. 
 

 [Proposition] 10 
 
 In the sections that are unequal no part of one of them will fit on a part of 
another20 . 
 Let there be two unequal sections ΑΒΓ and ΔΕΖ. 
 That no part of one of them will fit on a part of another. 
 [Proof]. For let, if possible, the part ΑΒ fit on a part ΔΕ. Then the whole 
ΟΛΕ section ΑΒΓ will fit on the section ΔΕΖ, as is proved in Theorem 6 of this 
Book. Therefore the section ΑΒΓ is equal to the section ΔΕΖ, which is impossi-
ble.  So no part of ΑΒΓ fits on a part of ΔΕΖ. 
 

          [Proposition ] 11 
 

 Every parabola is similar to every parabola 21 . 
 Let there be two parabolas ΑΒ and ΓΔ whose axes ΑΚ and ΓΟ. 
 I say that two sections are similar. 
 [Proof]. For let their latera recta ΑΠ and ΓΡ, and let as ΑΚ be to ΑΠ, so 
ΓΟ be to ΓΡ. We cut ΑΚ at two  arbitrary points Ζ and Θ, and cut ΓΟ into the 
same number of arcs with the same ratio at the points Μ and Ξ. We draw from 
the axes ΑΚ and ΓΟ the perpendiculars ΖΕ, ΘΗ, ΚΒ, ΜΛ, ΝΞ, and ΔΟ [and con-
tinue them to meet the sections again at Ι, Σ, Τ, Υ, Φ, and Χ]. Then as ΠΑ is to 
ΑΚ, so ΓΡ is to ΓΟ, and ΚΒ is the mean proportional between ΑΠ and ΑΚ, and 
ΟΔ is the mean proportional between ΓΡ and ΡΟ, because of what is proved in 
Theorem 11 of Book I. 
 As ΚΒ is to ΚΑ, so ΔΟ is to ΟΓ. And ΒΤ is equal to the double ΒΚ, and ΔΧ 
is equal to the double ΔΟ. Therefore as ΒΤ is to ΑΚ, so ΔΞ is to ΓΟ. 
 Furthermore as ΠΑ is to ΑΚ, so ΓΡ is to ΓΟ. And as ΑΚ is to ΑΘ, so ΟΓ is 
to ΓΞ, and as ΑΠ is to ΑΘ, so ΓΡ is to ΓΞ. 
 Hence it will be proved, as we proved above, that as ΗΣ is to ΑΘ, so ΝΦ is 
to ΓΞ. 
 And similarly too it will be proved that as ΕΙ is to ΖΑ, so ΛΥ is to ΜΓ. 
 Therefore the ratio of [each of] ΒΤ, ΗΣ, and ΕΙ ,which are perpendiculars 
to the axis, to the amounts ΑΚ, ΑΘ, and ΑΖ which they cut off from the axis is 
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equal to the ratio of ΔΧ, ΝΦ, and ΛΥ ,which are perpendiculars to the axis, to 
the amounts ΟΓ, ΞΓ, and ΜΓ which they cut off from the axis. 
 And the ratios of the segments cut of from one of the axes to the seg-
ments cut off from the other are equal. Therefore the section ΑΒ is similar to 
the section ΓΔ. 
 

[Proposition] 12 
 

 Hyperbolas and ellipses in which the eidoi corresponding to their axes are 
similar are also [themselves] similar, and if the sections are similar, then the ei-
doi corresponding to their axes are similar 22. 
 Let there be two hyperbolas or ellipses ΑΒ and ΓΔ whose eidoi corre-
sponding to their axes  ΑΚ and ΓΟ are similar, the transverse diameters of these 
conic are ΑΠ and ΡΓ. We cut off from the axes the segments ΑΓ and ΓΟ and let 
as ΑΚ be to ΑΠ, so ΓΟ be to ΓΡ. 
 We cut ΑΚ arbitrarily at Ζ and Θ, and cut ΓΟ into the same number of 
segments as ΑΚ, and in the same ratios at Μ and Ξ we draw from Ζ, Θ, Κ, Μ, Ξ, 
and Ο  the  ΒΚ, ΘΗ, ΖΕ, ΟΔ, ΞΝ, and ΜΛ to the axes, [and continue them to 
meet the sections again at Τ, Σ, Ι, Χ, Φ, and Υ]. 
 Then because the eidoi of the sections are similar as sq.ΒΚ is to pl. ΠΚΑ, 
so sq. ΔΟ is to pl.ΡΟΓ, as may be proved from Theorem 21 of Book I. 
 But as pl.ΠΚΑ is to sq.ΚΑ, so pl.ΡΟΓ is to sq.ΟΓ. Therefore as sq.ΒΚ is to 
sq.ΚΑ, so sq.ΔΟ is to sq. ΟΓ , and as ΒΚ is to ΚΑ , so ΔΟ is to ΟΓ, and as ΒΤ is 
to ΚΑ, so ΔΧ is to ΟΓ. 
 Furthermore as ΠΑ is to ΑΚ, so ΡΓ is to ΓΟ, and as ΚΑ is to ΑΘ, so ΟΓ is 
to ΓΞ. Therefore as ΑΠ is to ΑΘ, so ΡΓ is to ΓΞ. Hence it will proved, as we 
proved above, that as ΗΣ is to ΘΑ, so ΝΦ is to ΞΓ, and that as ΕΙ is to ΖΑ, so 
ΛΥ     is to ΜΓ. 
 Therefore the ratios of the perpendiculars ΒΤ, ΗΣ and ΕΙ to the amounts  
ΑΚ, ΑΘ, and ΑΖ they cut of from the axis are [respectively] equal to the ratios 
of the perpendiculars ΔΧ, ΝΦ, and ΛΥ to the amounts ΟΓ, ΗΓ, and ΜΓ they cut 
off from the axis. 
 And the ratios of the parts of ΑΚ that the perpendiculars cut of to the 
parts of ΓΟ which the perpendiculars cut off are equal. Therefore the section ΑΒ 
is similar to the section ΓΔ. 
 Furthermore we make the section ΑΒ similar to the section ΓΔ. Then since 
two sections are similar we draw in the section ΑΒ some perpendiculars ΒΤ, ΑΣ, 
and ΕΙ to the axis, and in the section ΓΔ the perpendiculars ΔΧ, ΝΦ, and ΛΥ, and 
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let the ratios of these perpendiculars to the amounts they cut off from the axes 
be equal [respectively], and likewise the ratios of the parts they cut off from 
one of the axes to the parts they cut off from other axis, then as ΒΚ is to ΑΚ, 
so ΔΟ is to ΟΓ, and as ΚΑ is to ΑΘ, so ΟΓ is to ΓΞ, and as ΑΘ is to ΘΗ, so ΓΞ is 
to ΝΞ. Therefore as ΒΚ is to ΘΗ, so ΔΟ is to ΝΞ. 
 And as sq.ΒΚ is to sq.ΗΘ, so sq.ΔΟ is to sq.ΝΞ. Therefore as pl.ΠΚΑ is to 
pl.ΠΘΑ, so pl.ΡΟΓ is to pl.ΡΞΓ because of what was proved in Theorem 21 of 
Book I. and because as ΚΑ is to ΑΘ, so ΟΓ is to ΓΞ, [and as ΚΑ is to ΑΠ, so ΟΓ 
is to ΓΡ], as ΚΠ is to ΠΘ, so ΡΟ is to ΡΞ, and [hence] as ΠΘ is to ΚΘ, so ΡΞ is to 
ΟΞ. But as ΚΘ is to ΑΘ, so ΟΞ is to ΞΓ. Therefore as ΠΘ is to ΘΑ, so ΡΞ is to ΞΓ    
And [hence] as pl.ΠΘΑ is to sq.ΘΑ, so pl.ΡΞΓ is to sq.ΞΓ. 
 But as sq.ΑΘ is to sq.ΘΗ, so sq.ΓΞ is to sq.ΝΞ. Therefore as pl.ΠΘΑ is to 
sq.ΘΗ, so pl.ΡΞΓ is to sq.ΞΝ. 
 But the ratio pl.ΠΘΑ to sq.ΘΗ is equal to the ratio of ΠΑ to the latus rec-
tum [of ΑΒ], as is proved in Theorem 21 of Book I. Therefore the eidoi corre-
sponding to ΠΑ and ΡΓ are equal 23-24 . 
 

[Proposition] 13 
 

   Let there be two hyperbolas or ellipses whose centers  Ζ and I, and di-
ameters ΓΛ and ΕΜ. Let the angles that those diameters form with their ordi-
nates be equal, and let the eidoi corresponding to ΓL and ΕΜ be similar. 
 If those eidoi of hyperbolas or ellipses that are corresponding to diame-
ters other than the axes are similar, and the ordinates falling on those diameters 
form equal angles with the diameters, then the sections are similar25. 

I say that the sections are similar. 
 [Proof]. For let from Γ and Ε the tangents ΓΘ and ΕΟ to the sections be 
drawn. Then these tangents are parallel to the ordinates fallen. We draw 
through Α and Δ the straight lines  ΤΑΥ and ΦΔΧ parallel to the tangents. 
Now the eidoi corresponding to ΓΛ and ΕΜ are similar latus rectum proved in 
Theorem 37 of Book I. And likewise [the ratio pl.ΙΞΟ to sq.ΕΞ] is equal to the 
ratio of the [transverse] diameters to [its] the latus rectum. Therefore the ra-
tios of the transverse diameter ΚΔ to [its] latus rectum. Therefore two ratios of 
the [transverse] axes ΑΒ and ΚΔ to their latera recta are equal. And the eidoi 
corresponding to the axes of these sections are similar. Therefore two sections 
are similar as is proved in the preceding theorem . 
 And it is evident too that in the case on two ellipses this requires that the 
axes ΒΑ and ΚΔ both be the major axes or the both be the minor axes  because 
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the ratio of ΒΑ to its latus rectum in both cases is equal to the ratio of ΚΔ to its 
latus rectum. And the rule is one and the same for major and minor [axes]. 
 

[Proposition] 14 
 

 A parabola is not similar to a hyperbola and to an ellipse 27. 
 Let there be the parabola ΑΒ whose axis ΑΗ, and the hyperbola or the el-
lipse ΓΔ similar to it. And let the axis of ΓΔ be the straight line ΓΔ, and let the 
side of the eidos of the section, the transverse axis, be ΓΜ. 
       Let there be the perpendiculars ΒΙ and ΖΝ in the sections [in the parabola], 
and ΔΞ and ΚΟ [in the hyperbola on the ellipse], and let the ratios of these
 [perpendiculars] to the segments they cut off from the axes in one of the 
sections be equal to [their] ratios to the segments they cut off from the axis of 
other section, and let the ratios of the segments cut off from one of the axes 
to the segments cut off from the other axis be equal. Then as ΖΗ is to ΗΑ, so 
ΚΛ is to ΛΓ, and as ΗΑ is to ΑΕ, so ΛΓ is to ΓΘ. 
 But as ΑΕ is to ΕΒ, so ΓΘ is to ΘΔ. Therefore as ΖΗ is to ΕΒ, so ΚΛ is to 
ΔΘ, and as sq.ΖΗ is to sq.ΒΕ, so sq.ΚΛ is to sq.ΔΘ. 
 But as sq.ΖΗ is to sq.ΒΕ, so ΗΑ is to ΑΕ, as is proved in Theorem 20 of 
Book I. And as ΗΑ is to ΑΕ, so ΛΓ is to ΓΘ. Therefore as sq.ΚΛ is to sq.ΔΘ, so 
ΛΓ is to ΓΘ, but as ΚΛ is to sq.ΔΘ, so pl.ΜΛΓ is to pl.ΜΘΓ, as is proved in Theo-
rem 21 of Book I. Therefore as ΛΓ is to ΓΘ, so pl.ΜΛΓ is to pl.ΜΘΓ. Therefore 
ΜΘ is equal to ΜΛ, but that is impossible. Therefore the parabola is not equal to 
any other section 
 

[Proposition] 15 
 

 A hyperbola is not similar to an ellipse 28. 
 Let there be the hyperbola ΑΒ and the ellipse ΓΔ. Let their axes be 
[respectively] ΑΚ and ΓΜ, and let their transverse diameters be ΑΕ and ΓΖ. 
 Then, if these two sections are similar, then there are in the sections 
some perpendiculars, for instance ΒΝ, ΘΞ, ΔΟ, and ΛΗ, such that the ratios of 
these [perpendiculars] to the segments they cut off from the axes in both sec-
tions are [respectively] equal. Then we will prove as we proved in the preceding 
theorem that as sq.ΘΚ is to sq.ΒΗ, so sq.ΛΜ is to sq. ΔΙ, and pl.ΕΚΑ is to 
pl.ΕΗΑ, and pl.ΖΜΙ is to pl.ΖΙΓ. Therefore as pl.ΕΚΑ is to pl.ΕΗΑ, so pl.ΖΜΓ is to 
pl.ΖΙΓ. And when what is so and as ΚΛ is to ΑΗ, so ΜΓ is to ΓΙ, and [hence] as 
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ΚΕ is to ΕΗ, so ΖΜ is to ΖΕ, that is impossible, therefore the section ΑΒ is not 
similar to the section ΓΔ. 
 

[Proposition] 16 
 

 Opposite hyperbolas are similar and equal  29.  
 Let there be two opposite hyperbola Α and Β whose axis ΑΒ. 
 I say that the hyperbolas Α and Β are similar and equal. 
 [Proof]. The latera recta of the hyperbolas Α and Β are equal, as is proved 
in the proof of Theorem 14 of Book I. 
 And the straight line ΑΒ is a side common to their eidoi. Therefore the ei-
doi corresponding to the axis of the hyperbolas Α and Β are similar and equal. 
Therefore the hyperbola Α is similar to the hyperbola Β and is equal to it, as is 
proved in Theorem 12 of this Book. 
 

[Proposition] 17 
 

 If there are similar sections, and tangents are drawn to them ending at 
their axes and forming equal angles with the axes, and diameters are drawn to 
the sections from the points of contact, and a point is taken on each of those 
diameter, and the ratios of the segments between the taken points and the ver-
tices of those diameter to the tangents are equal and straight lines are drawn 
through [each] taken point parallel to the tangents so that they cut off seg-
ments from the sections then those segments are similar, and their position is 
similar, and if  segments are similar and their position is similar, then the ratios 
of their diameters to the [corresponding] tangents are equal,  and the angles 
which the tangents form with the axes are equal 30. 
 First let the similar sections be two parabolas ΑΒ and ΚΛ, let their axis be 
ΑΖ and ΚΟ, and the tangents to them are ΓΖ and ΜΟ. Let the angles ΑΖΓ and 
ΜΟΚ be equal. We draw through Γ and Μ the diameters ΓΕ and ΜΞ to the sec-
tions. Let as ΕΓ is to ΓΖ, so ΜΞ be to ΜΟ. We draw through Ε and Ξ the straight 
lines  ΔΒ and ΝΛ parallel  to ΓΖ and ΜΟ. 
 I say that the segments ΒΓΔ and ΛΜΝ are similar and similarly situated. 
 [Proof]. We draw from Α and Κ the perpendiculars ΑΗ and ΚΡ to the axes 
[cutting ΖΓ and ΟΜ at Θ and Π] , and continue the diameters ΕΓ and ΞΜ until 
they meet them at Η and Ρ.  
 We make the ratio ΣΓ to the double ΓΖ equal to the ratio ΘΓ to ΓΗ, and 
the ratio ΤΜ to the double ΜΟ equal to the ratio ΠΜ to ΜΡ. Then ΣΓ and ΤΜ are 
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latera recta corresponding to the diameters ΓΕ and ΜΞ [respectively]. There-
fore sq.ΔΕ is equal to pl.ΣΓΕ, as is proved in Theorem 49 of Book I. And likewise 
sq.ΝΞ is equal to pl.ΤΜΞ. And the angle ΚΟΜ is equal to the angle ΑΖΓ, the an-
gle ΚΟΜ is equal to the angle ΡΜΟ, and the angle ΑΖΓ is equal to the angle ΗΓΖ 
because ΞΡ and EH are parallel to ΟΚ and  ΖΑ [respectively], as is proved from 
Theorem 46 of Book I. Therefore the angle ΡΜΟ is equal to the angle ΗΓΖ,and 
the angles at Η and Ρ are equal, therefore the triangle ΘΓΗ is similar to the tri-
angle ΡΜΠ, and [hence] as ΘΓ is to ΓΗ, so ΠΜ is to ΜΡ. Therefore as ΣΓ is to 
ΓΖ, so ΤΜ is to ΜΟ. 
 But the ratio ΓΖ to ΓΕ had been made equal to the ratio ΜΟ to ΜΞ there-
fore as ΣΓ is to ΓΕ, so ΤΜ is to ΜΞ. 
 Hence it will be proved, as we proved in Theorem 11 of this Book  that, if 
the straight lines are drawn to ΓΕ parallel to ΔΒ and the straight lines are drawn 
to ΜΞ parallel to ΛΝ,  and the ratio of these straight lines which are parallel to 
[the segment] bases ΔΒ and ΛΝ to the segments they cut off from the [corre-
sponding] diameters adjacent to Γ and M are equal, and the ratios of the seg-
ments cut off from one of the diameters to those cut off from other diameter 
are also equal, and the angles formed by the coordinates to parallel to these 
bases and the diameters in both sections are equal [because the angles at Γ and 
Μ are equal], then the segment ΒΓΔ is similar to the segment ΛΜΝ, and its po-
sition is similar to its position. 
 Furthermore we make the segment ΔΓΒ of one section similar to the 
segment ΛΜΝ of other section, and let their diameters be ΓΕ and ΜΞ, and their 
bases be ΒΔ and ΛΝ,  and the points of their vertices be Γ and Μ and let  ΓΖ and 
MO be tangents to the sections at these points. Then I say that the angle ΑΖΓ is 
equal to the angle ΚΟΜ, and that as ΕΓ is to ΓΖ, so ΜΞ to ΜΟ. 
 We draw the straight lines that we drew previously. Then since the sec-
tions are similar, two angles formed by ΔΒ and ΓΕ are equal to two angles 
formed by ΛΝ and ΜΞ. And ΖΓ and ΟΜ are parallel to ΒΔ and ΛΝ [respectively]. 
Therefore the angles at Γ, Ε, Μ, and Ξ are equal. 
 Therefore, since that is so, and [since] the angles ΖΓΕ and ΟΜΞ are ob-
tuse, the angle ΖΓΕ is equal to the angle ΟΜΞ. Therefore the angle at Ζ is equal 
to the angle at Ο. 
 Furthermore as ΔΒ is to ΕΓ, so ΝΛ is to ΞΜ because of the similarity of 
the segments of the sections, and [hence] as ΔΕ is to ΓΕ, so ΝΞ is to ΞΜ, and 
as ΣΓ is to ΔΕ, so ΔΕ is to ΕΓ, and as ΤΜ is to ΞΝ, so ΝΞ is to ΞΜ. Therefore as 
ΣΓ is to ΓΕ, so ΤΜ is to ΜΞ. And as ΖΓ is to ΓΣ, so ΜΟ is to ΜΤ because that 
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the triangle ΓΘΗ is similar to the triangle ΠΜΡ. Therefore as ΓΖ is to ΓΕ, so ΟΜ 
is to ΜΞ. And we had [already] proved that the angles at Ζ and Ο are equal . 
 

[Proposition] 18 
 

 Furthermore we make the  mentioned  sections hyperbolas or ellipses,  
and let every thing else be as we stated in the preceding theorem 31 , and let 
the diameters ΓΕ and ΜΞ end at the centers  Ι and Φ of the sections, and let 
the ratio of [abscissa] ΓΕ to the tangent ΓΖ be equal to the ratio of [abscissa] 
ΞΜ to [the tangent] ΜΟ, and let the angles ΑΖΓ and ΚΟΜ be equal, then I say 
that the segments ΔΓΒ and ΛΜΝ are similar, and let the ratio ΣΓ to the double 
ΓΖ be equal to the ratio ΘΓ to ΓΗ, and let the ratio ΤΜ to the double MO be 
equal to the ratio ΠΜ to ΜΡ. Then ΓΣ and ΤΜ are latera recta corresponding to 
the diameters ΓΕ and ΜΞ [respectively], as is proved in Theorem 50 of Book I. 
 Therefore we draw from  Α, Κ, Γ, and Μ the perpendiculars ΑΗ, ΚΡ, ΓΥ, 
and ΜΧ to the axes. Then, since two sections are similar, the eidoi correspond-
ing to their axes are also similar, as is proved in Theorem 12 of this Book, and 
since the eidoi of these two sections corresponding to their axes are similar, as 
pl.ΙΥΖ is to sq.ΓΥ, so pl.ΦΧΟ is to sq.ΜΧ because of what is proved in Theorem 
37 of Book I. 
 And we had constructed the angles at Ζ and Ο as equal, and the angles at 
Υ and Χ are equal because they are right. Therefore the triangle ΓΥΖ is similar 
to the triangle ΜΧΟ. 
 And we had [already] proved that as pl.ΙΥΖ is to sq.ΓΥ, so pl.ΦΧΟ is to 
sq.ΜΧ. Therefore the triangle ΓΥΙ is similar to the triangle ΜΦΧ32 . 
 And [hence] the angle at I is equal to the angle at Φ, and the angle ΖΓΙ is 
equal to the angle ΦΜΟ. And the angles at Ε and Ξ are equal because the tan-
gent is parallel to the ordinates. And the angles at Α and Κ are right, and the 
angles at Φ and I have [already] been proved equal. Therefore the remaining an-
gles [in the triangles ΙΗΑ and ΦΡΚ] at Η and Ρ are equal. And it has [already] 
been proved that the angle ΖΓΙ is equal to the angle ΟΜΦ. Therefore the 
triangle ΘΓΗ is similar the triangle ΠΜΡ, and [hence] as ΘΓ is to ΓΗ, so ΠΜ is to 
ΜΡ. But we had made the ratio ΓΣ to the double ΓΖ equal to the ratio ΓΘ to  ΓΗ, 
and the ratio ΤΜ to the double ΜΟ equal to the ratio ΠΜ to ΜΡ. Therefore as ΓΣ 
is to ΓΖ, so ΜΤ is to ΜΟ. 
 But as ΓΖ is to ΓΙ, so ΟΜ is to ΜΦ. Therefore as ΓΣ is to ΓΙ, so ΜΤ is to 
ΜΦ, and as ΓΣ is to ΓΨ, so ΜΤ is to ΜϘ. Therefore the eidoi of which one is 
pl.ΣΓΨ and the other is pl.TMϘ are similar. 
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 Furthermore as ΓΣ is to ΖΓ, so ΜΤ is to ΜϘ, and we had made the ratio 
ΓΖ to ΓΕ equal to the ratio ΜΟ to ΜΞ.Therefore as ΓΣ is to ΓΕ, so ΜΤ is to ΜΞ. 
 And since that is so, and since the eidos pl.ΣΓΨ is similar to the eidos  
pl.TMO, then, when we divide ΓΕ into partitions and draw through the points of 
partition straight lines parallel to ΔΒ which is the base of the segment [ΔΑΒ], 
and divide ΜΞ in the same ratios as the partitions of ΓΕ, and again draw through 
the points of partition straight lines parallel to ΛΝ which is the base of the seg-
ment [ΛΜΝ], then it will be proved, as we proved in Theorem 12 of this Book, 
that the ratios of the parallel straight lines cutting ΓΕ to the portions they cut 
off from it adjacent to Γ are equal to the ratios of the parallel straight lines cut-
ting ΜΞ to the portions they cut off from it adjacent to M. And the angles 
formed by the base ΔΒ with ΓΕ are equal to the angles formed by the base ΛΝ 
with ΜΞ, because these angles are equal to the angles at Γ and Μ continued by 
the tangent and the diameter. 
 Therefore two segments ΔΓΒ and ΝΜΛ are similar, and their position is 
similar. 
 Furthermore we make the segment ΔΓΒ similar to the segment ΝΜΛ, then 
I say that the angle ΓΖΑ is equal to the angle ΜΟΚ, and that as ΓΕ is to ΓΖ, so 
ΞΜ is to ΜΟ. 
 [Proof]. For, since two segments are similar, there can be drawn in them 
some straight lines parallel to ΔΒ and ΝΛ equal, to number, cutting ΓΕ and ΜΞ 
at equal angles, and [then] the ratios between them and [also] the ratios of the 
bases ΔΒ and ΛΝ to the portions they cut off from the diameters are equal, and 
also the ratios of the partitions of ΓΕ [continued by these straight lines] to the 
partitions of ΜΞ are equal to each other, and the straight lines drawn to ΓΕ in 
the segment ΔΓΒ parallel to ΔΒ are equal in square to the rectangular planes ap-
plied to ΓΣ and greater than it [in the case of the hyperbola] or smaller than 
it [in the case of the ellipse] by are rectangular plane similar to pl.ΣΓΨ, as is 
proved in Theorem 50 of Book I, and likewise too the straight lines drawn to ΜΞ 
in the segment ΝΜΛ parallel to ΛΝ are equal in square to the rectangular planes 
applied to ΤΜ and greater and smaller than it by a plane similar to pl.TMϘ. 
 Therefore, since that is so, then it will be proved, as we proved in Theo-
rem of this Book, that as ΓΣ is to ΨΓ, so ΜΤ is to ΜϘ. 
 And when that is so, and the ordinate meet two diameters at equal an-
gles, and [for that reason] as pl.ΙΥΖ is to sq.ΓΥ, so pl.ΦΧΟ is to sq.ΜΧ, and the 
angles at Υ and Χ are right, and the angle ΖΓΙ is equal to the angle ΟΜΦ, then 
the triangle ΙΓΖ is similar to the triangle ΦΜΟ . 
 And that will be proved in the case of the hyperbola by a proof that is  
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universally applicable, but in the case of the ellipse it will be proved [only] by 
the axes ΑΙ and ΚΦ being either both major or both minor axes.  
       Then, since as ΓΣ is to ΓΨ, so MT is to MϘ, as pl.ΓΕΨ is to sq.ΔΕ, so 
pl.Μ ΞϘ 
is to sq.ΝΞ, as is proved in Theorem 21 of Book I. And as sq.ΔΕ is to sq.ΓΕ, so 
sq.ΝΞ is to sq.ΜΞ. Therefore as pl.ΨΕΓ is to sq.ΕΓ, so pl.ϘΞΜ  is to sq.ΞΜ, and 
as ΨΕ is to ΕΓ, so ϘΞ  is to ΞΜ. 
 But as ΙΓ is to ΓΖ, so ΦΜ is to ΜΟ because of the similarity of the 
triangles ΙΓΖ and ΦΜΟ. And ΓΨ is equal to the double ΓΙ, and MϘ is equal to the 
double ΜΦ. Therefore as ΓΖ is to ΓΕ, so ΜΟ is to ΜΞ. And the angles at Ζ and Ο 
are equal. 
 

[Proposition] 19 
 

 When straight lines are drawn in a parabola or a hyperbola as perpendicu-
lars to the axis, then two segments cut off by each pair of perpendiculars on ei-
ther side [of the axis] are similar and similarly situated, but as for other seg-
ments [in that section], they are dissimilar to them 34. 
 Let there be the parabola or the hyperbola whose axis ΑΛ, and let a pair 
of straight lines be drawn in the section as perpendiculars ΒΘ and ΓΚ to the 
axes, and let them cut off from the section the segments ΒΓ and ΘΚ, and let 
the segments ΔΕ and ΘΚ be two segments not cut off by the same [pair of] 
perpendiculars. Then I say that the segments ΒΓ and ΘΚ are similar, and that 
the segments ΔΕ and ΘΚ are dissimilar. 
 [Proof]. As for [the statement] that the segments ΒΓ and ΘΚ are similar, 
that is evident because each of them will fit on other, as is proved in Theorem7 
of this Book. But as for [the statement] the segments ΔΕ and ΘΚ are dissimilar, 
that will be proved as follows. Let, if possible, the segments ΔΕ and ΘΚ be simi-
lar. We join ΔΕ and ΓΒ, and continue them to [meet the continued  axis at]  
Ζ and Η. Now the segments ΔΕ and ΘΚ are similar, therefore the segment ΘΚ 
will fit on the segment ΒΓ, as is proved in Theorem 7 of this Book. Therefore 
the section ΔΕ is similar to the section ΒΓ. Therefore when the straight lines ΒΓ 
and ΔΕ are continued in a straight line, they will meet the axis at equal angles 
because of what was proved in two preceding theorems. We draw ΜΞ bisecting 
ΓΒ and ΔΕ, draw from Μ [lying on the section] ΜΙ parallel to ΔΕΖ. Then ΜΞ is 
the diameter to the section because of what is proved in Theorem 28 of Book II. 
And ΜΙ is parallel to the ordinates falling on it, therefore it is tangent to the 
section. And the segments ΓΒ and ΔΕ are similar, therefore as ΜΙ is to ΜΞ, so 
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ΜΙ is to ΜΝ, as is proved in two preceding theorems. But that is impossible. 
Therefore the segment ΔΜΕ is dissimilar to the segment ΘΚ. 
 

[Proposition] 20 
 

 When straight lines are drawn in an ellipse as perpendiculars to its axis, 
then every pair of these perpendiculars cuts off on either side [of the axis] two 
segments similar to each other and similar to two segments cut off by the pair 
of perpendiculars whose distance from the center is equal to the distance of 
that pair of perpendiculars, and the position of these four segments is similar, 
and no other segment [in that ellipse] is similar [to these]34. 
 Let there be the ellipse whose axis ΑΛ, and let there be in it  the pair of 
straight lines  ΒΘ and ΓΚ cutting the axis at right angles. And let there be the 
other pair of straight lines ΖΙ and ΗΟ cutting the axis at right angles, the dis-
tance of which from the center is equal to the distance of those [straight lines]. 
Then I say that the segments ΒΓ, ΘΚ, ΖΗ, and ΙΟ are similar, and that none of 
other segments is similar to them. 
 [Proof]. As for [the statement] that the segments ΒΓ, ΘΚ, ΖΗ, and ΟΙ are 
similar and similarly situated, that  is evident because these segments will fit 
one on another as is proved in Theorem 8 of this Book. 
 But as for [the statement] that no other segment is similar to them; this 
will be proved as follows. Let, if possible the segment ΔΕ be similar to those 
segments. We join ΔΕ and ΓΒ. Then, when they continued, if one of them meets 
the axis, the other will meet it at the same angle as the first, as is proved in 
Theorem 18 of this Book. Therefore ΔΕ and ΓΒ are parallel. Therefore we bisect 
them and draw through two points of bisection ΜΝΞ. Then ΜΝΞ is a diameter to 
two segments, as is proved in Theorem 28 of Book II. Therefore since the seg-
ments ΔΕ and ΓΒ are similar, as ΓΒ is to ΞΜ, so ΔΕ is to ΜΝ. That is impossible 
for when we join ΜΒ and ΜΓ and continue them, they will not pass through Δ 
and Ε. Therefore the segment ΔΕ is dissimilar to the segment ΓΒ. 
 

[Proposition] 21 
 

 When straight lines are drawn in parabolas so as to be perpendiculars to 
the axes and to cut off from the axes in the directions of the vertices of the 
sections the segments whose ratios to the latera recta in all sections are equal, 
then  the segments that those perpendiculars cut off from one on the sections 
are similar to the segments that the other perpendiculars cut off from the other 
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section, and their situation is similar, but they are not similar to any of other 
segments that are taken from those sections 35. 
 Let there be two parabolas ΑΒ and ΕΖ whose axes ΑΞ and BY and their 
latera recta be ΑΠ and ΒΣ. We draw in one of two sections the perpendiculars 
ΒΜ and ΔΞ, and in other section the perpendiculars ΖΦ and ΡY, and let as ΑΜ be 
to ΑΠ, so ΕF be to ΕΣ,  and let as ΞΑ be to ΑΠ, so ΕΨ be to ΕΣ. 
 Then I say that the segment ΒΑΟ is similar to the segment ΖΕΟ, and that 
the arc ΔΑ is similar to the arc ΡΕ, and that the arc ΔΒ is similar to the arc ΖΡ. 
 [Proof]. Now as to [the statement] that the segment ΒΑΟ is similar to 
the segment ΖΕϘ; this will be proved as we proved [it] in Theorem 11 of this 
Book. Therefore we join ΔΒ and ΡΖ and continue them in a straight line to [meet 
the respective axes at] Κ and Ω. We bisect ΔΒ and ΡΖ at Θ and Τ, and draw 
through them ΓΘΛ and ΗΤΥ parallel to the axes, and draw from Γ and Η the 
perpendiculars ΓΝ and Ηι to the axes cutting ΔΚ and ΡΩ at Ι and ς] . 
 Then the ratio of ΑΠ to each of ΑΜ and ΑΞ is equal to the ratio of ΕΣ to 
each of ΕΨ [respectively]. 
 Therefore it will be proved from that, as we proved in Theorem 11 of this 
Book, that as sq.ΔΞ is to sq.ΒΜ, so sq.ΡΨ is to sq.ΖΦ. Therefore as ΔΞ is to ΒΜ, 
so ΡΨ is to ΖΦ, and as ΗΚ is to ΚΜ, so ΨΩ is to ΩΦ. 
 And convertendo as ΚΞ is to ΞΜ, so ΩΨ is to ΨΦ. 
 Furthermore as sq.ΔΞ is to sq.ΒΜ, so sq.ΡΨ is to sq.ΖΦ. Therefore as  ΞΑ 
is to ΑΜ, so ΨΕ is to ΕΦ because of what is proved in Theorem 20 of Book I. 
 And convertendo as ΑΞ is to ΞΜ, so ΕΨ is to ΨΦ.  
 But we have proved that as ΚΞ is to ΞΜ, so ΩΨ is to ΨΦ. Therefore as ΚΞ 
is to ΞΑ, so ΩΨ is to ΨΕ. 
      But as ΞΑ is to ΞΔ, so ΕΨ is to ΨΡ. Therefore as ΚΞ is to ΞΔ, so ΩΨ is to 
ΨΡ.  And the angles at Ξ and Ψ are right. Therefore the triangle ΚΞΔ is similar to 
the triangle ΩΨΡ, and [hence] the angles at Κ and Ω are equal, and as ΔΚ is to 
ΚΒ, so ΡΩ is to ΩΖ. 
 And convertendo as ΚΔ is to ΔΒ,so ΩΡ is to ΡΖ. 
 And ΔΒ was bisected at Θ, and ΡΖ was bisected at Τ. Therefore ΞΔ is to 
ΞΛ, so ΨΡ is to ΨΥ. 
 But ΛΞ is equal to ΓΝ and ΨΥ is equal to Ηι . Therefore as ΔΞ is to ΓΝ, so 
ΨΡ is to Ηι. 
 And therefore as ΞΑ is to ΑΝ, so ΨΕ is to Ει, axis proved in Theorem 20 
of Book I. 
 And convertendo as ΑΞ is to ΞΝ, so ΕΨ is to Ψι. 
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 But  we have proved that as ΚΞ is to ΞΑ, so ΩΨ is to ΨΕ. Therefore as ΚΞ 
is to ΞΝ, so ΩΨ is to Ψι. And therefore as ΚΔ is to ΔΙ, so ΩΡ is to Ρς. 
 And separando as ΚΙ is to ΙΔ, so Ως is to ςΡ. 
 But it was shown that as ΚΘ is to ΚΔ , so ΩΤ is to ΤΡ. Therefore as ΚΘ is 
to ΘΙ, so ΩΤ is to ΤΓ. 
 But as ΙΘ is to ΘΓ, so ςΤ is to ΤΗ because the triangle ΙΘΓ is similar to the 
triangle ςΤΗ. Therefore as ΚΘ is to ΘΓ, so ΩΤ is to ΤΗ. 
 But ΘΚ is equal to the tangent drawn from Γ to the axis because it is par-
allel to ΘΚ, and they are between parallel straight lines [ΓΛ and ΚΞ]. 
 Similarly too ΩΤ is equal to the tangent drawn from Η to the axis. There-
fore the ratio of the tangent drawn from Η to ΗΤ is equal to the ratio of the 
tangent drawn from Γ to ΓΘ.And it was proved in Theorem 17 of this Book 
that, when that is the case, and when the angles formed by the tangent and the 
axis are equal [in both sections], then the segments from the vertices of which 
the tangents are drawn are similar. Therefore the segments ΔΓΒ and ΡΗΖ are 
similar and similarly situated. 

Furthermore, we make the segment  � α a segment which is not cut off 
by the mentioned perpendiculars, then I say that it is not similar to the segment 
ΔΓΒ. 
 [Proof]. For the segment ΔΓΒ is similar to the segment ΡΗΖ, but the seg-
ment ΡΗΖ is dissimilar to the segment  �α ,as is proved in Theorem 19 of this 
Book because it is not cut off by the same pair of perpendiculars [as the seg-
ment �α ]. Therefore the segment �α is not similar to the segment ΔΓΒ. 
 

[Proposition] 22 
 

 For similar hyperbolas and ellipses the same properties hold as we proved  
hold for parabolas in the preceding theorem 36. 

Let the situation described for the parabola remain the same [for the hy-
perbola and the ellipse], and let the diameters ΓΘ and ΗΤ end at centers Λ and 
Υ [respectively]. 
 We draw from Γ and Η tangents ΓΧ and Η� to the and Η tangents ΓΧ and 
Η� the sections. Then they are parallel to ΔΚ and ΡΩ [respectively]. 
` Now the ratio of ΑΜ to the latus rectum [of ΑΒΓ] is equal to the ratio of 
ΕΦ to the latus rectum of other section. Therefore ,since the sections are simi-
lar, then their eidoi are also similar, as is proved in Theorem 12 of this Book 
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Therefore the ratio of the transverse diameter of one of the sections to the 
latus rectum is equal to the ratio of the transverse diameter of other section to 
its latus rectum. 
 And we had made the ratio of two latera recta to ΑΜ and ΕΦ [respec-
tively] equal. Therefore, since that is the case, and since the eidoi of two sec-
tions are similar, then it will be proved, as was proved in Theorem 12 of this 
Book, that the straight lines can be drawn in the segment ΒΑΟ parallel to ΒΟ, 
and in the segment ΖΕϘo parallel to ΖϘ, and the number of the straight lines 
drawn in the segment ΖΕϘ is equal to the number of the straight lines drawn in 
the segment ΒΑΟ, and their ratios are equal to their ratios, and the ratios of the 
straight lines drawn in the segment ΖΕϘ, and [also] of ΖϘ to the portions they 
cut off from the axis adjoining Ε are equal to the ratios of the straight lines 
drawn in [the segment] ΒΑΟ, and [also] of ΒΟ to the portions they cut off from 
the axis adjoining Α and [also] the ratios of the portions cut off the axis ΑΜ to 
the portions cut off from the axis  ΕΦ are equal, therefore the segmentσ ΒΑΟ 
and ΖΕϘ are similar. 
 Furthermore the ratio ΑΜ to ΑΠ is equal to the ratio ΕΦ to ΕΣ. And also 
as ΑΞ is to ΑΠ, so ΕΨ is to ΕΣ. Therefore as ΔΞ is to ΑΞ ,so ΡΨ is to ΕΨ, and as 
ΒΜ is to ΑΜ, so ΖΦ is to ΕΦ. And as ΞΑ is to ΨΕ, so ΑΜ is to ΕΦ, and as AM is 
to ΜΒ, so ΕΦ is to ΖΦ. Therefore as ΔΞ is to ΒΜ, so ΡΨ is to ΖΦ, and as ΞΚ is to 
ΚΜ, so ΨΩ is to ΩΦ. And convertendo as ΚΞ is to ΞΜ, so ΩΨ is to ΨΦ. 
 But as ΞΜ is to ΞΑ, so ΨΦ is to ΨΕ because as ΞΑ is to ΑΜ, so ΨΕ is to 
ΕΦ. Therefore as ΚΞ is to ΞΑ, so ΩΨ is to ΨΕ. 
 But as ΞΑ is to ΞΔ, so ΕΨ is to ΨΡ. Therefore as ΚΞ is to ΞΔ, so ΩΨ is to 
ΨΡ. And the angles at Ξ and Ψ are right. Therefore the angles at Κ and Ω are 
also equal. Therefore the angles at Χ and � are equal. And the sections are simi-
lar, therefore their eidoi are similar. 
 And ΓΧ and Η� are tangents. Therefore as pl.ΛΝΧ is to sq.ΓΝ , so  
pl.Υιι� is to sq.Η ιι, because of what is proved in Theorem 37 of Book I. And as 
sq.ΓΝ is to sq.ΝΧ, so sq.Ηιι is to ιι� because of the similarity of the triangles 
ΓΝΧ and Ηιι� .Therefore as pl.ΛΝΧ is to sq.ΝΧ, so pl.Υιι� is to  
sq.� ιι .Therefore as is to ΛΝ is to ΝΧ, so Υιι is to �ιι . 
 But as ΝΧ is to ΓΝ, so �ιι is to Ηιι because of the similarity of the trian-
gles [ΓΝΧ and Ηιι� ]. Therefore as ΛΝ is to ΓΝ, so Υιι is to Ηιι , and the angles 
[at] Ν and ιι are right. Therefore the triangle ΛΝΓ is similar to the triangle ΥιιΗ. 
Therefore the angles at Λ and Υ are equal. 
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 But it was [already] shown that the angles at Χ and � are equal. There-
fore as ΧΛ is to ΓΛ, so �Υ is to ΥΗ, and as ΧΚ is to ΓΘ, so Ω� is to ΗΤ because 
ΓΧ is parallel to ΘΚ, and Η� to ΤΩ. 
 Furthermore the eidoi of two section are similar, therefore as ΑΜ is to 
ΜΒ, so ΕΦ is to ΦΖ. 
 But as ΜΒ is to ΜΚ, so ΦΖ is to ΦΩ. Therefore as ΑΜ is to ΜΚ, so ΕΦ is 
to ΦΩ. And dividendo as ΑΜ is to ΑΚ, so ΕΦ is to ΕΩ. 
 Furthermore as ΑΛ is to ΑΜ, so ΕΥ is to ΕΦ because as ΑΛ is to ΑΠ, so 
ΕΥ is to ΕΣ, and as ΑΠ is to ΑΜ, so ΕΣ is to ΕΦ. Therefore as ΑΛ is to ΑΚ, so ΥΕ 
is to ΕΩ, and as ΑΛ is to ΑΚ, so ΕΥ is to ΥΩ. 
 Furthermore as ΛΝ is to ΝΧ, so Υιι is to ιι�  because of the similarity of 
the triangles. But as ΝΛ is to ΛΧ, so sq.ΑΛ is to sq.ΛΧ because of what is 
proved in Theorem 37 of Book I. And likewise as ι ιΥ is to ι ι� , so sq.ΕΥ is to 
sq.Υ� .Therefore sq.ΑΛ is to sq.ΛΧ, so sq.ΕΥ is to sq.Υ� , and [hence] as ΑΛ is 
to ΛΧ, so ΕΥ is to Υ� . 
 But we have proved that as ΑΛ is to ΛΚ, so ΕΥ is to ΥΩ. Therefore as ΛΧ 
is to ΛΚ, so Υ� is to ΥΩ, therefore as ΛΧ is to ΧΚ, so Υ� is to �Ω . And as ΓΧ is 
to ΧΛ, so  Η� is to �Υ  because the triangle ΓΧΛ is similar to the triangle  
Η�Υ , therefore as ΓΧ is to ΧΚ , so Η� is to �Ω. 
 But we have proved above that as ΧΚ is to ΓΘ, so �Ω is to ΗΤ, therefore 
as ΓΧ is to ΓΘ, so Η� is to ΗΤ . 
 And the angles at Χ and  � are equal. Therefore the segments ΔΓΒ and 
ΡΗΖ are similar and similarly situated, as is proved in Theorem 18 of this Book. 
 Furthermore we make a segment not cut off by the mentioned perpen-
diculars, and also [in the case of the ellipse] not cut off by perpendiculars 
whose distances from the center is equal to that of others 
perpendiculars, then I say that it is dissimilar to the segment ΑΓΒ. 
 [Proof]. For let, if possible, it be similar to it. Now the segment ΔΒ is simi-
lar to the segment ΡΖ. Therefore the segment Ια is similar to the segment ΡΖ. 
But it is not cut off by the same perpendiculars [as ΡΖ], nor [in the case of the 
ellipse] by perpendiculars whose distance from the center is equal to the dis-
tance of [those perpendiculars]. But that is impossible, as is proved in Theo-
rems 19 and 20 of this Book. Therefore the segment Ια is not similar to the 
segment ΡΖ, nor to the segment ΔΓΒ. 
 

[Proposition] 23 
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 In sections that are not similar no segment of one of them is similar to an 
segment of another 37. 
 Let there be two dissimilar sections ΑΒ and ΓΔ. And first let them both be 
hyperbolas or ellipses. 
 Then I say that no segment of ΑΒ is similar to an segment of ΓΔ. 
 [Proof]. For let, if that is possible, the segment ΒΕ be similar to the  seg-
ment ΔΖ.We join  ΒΕ and ΔΖ, and bisect them at Η and Θ. Let the centers of the 
sections be Κ and Λ We join ΗΜΚ and ΘΝΛ, then they are diameter to the sec-
tions, as is proved in Theorem 47 of Book I. Now ΗΝΚ and ΘΝΛ are either axes 
or not. Therefore, if they are axes, and the segments ΒΕ and ΔΖ are similar, then 
there can be drawn to the axis straight lines parallel to ΕΒ such that the ratios 
of them and the ratio of ΒΕ to the portions cut off [by these straight lines], and 
the ratio of ΒΕ to the portions cut off [by these straight lines} from the axis ad-
jacent to its vertex are equal to the ratios of the straight lines equal in  number 
to those [first straight lines] drawn to other axis parallel to ΔΖ and [to the ratio] 
of ΔΖ to the portions cut off [by  them] from the axis of other section adjacent 
to its vertices, and [such that] the ratios of the  segments cut off from one of 
the axes to the  segments cut off from other axis are [all] equal, and the paral-
lel straight lines are perpendiculars to the axes, therefore the sections ΑΒ and 
ΓΔ will be similar. 
 But if the diameters ΗΜΚ and ΘΝΛ are not axes then we make the axes 
ΑΚ and ΓΛ, and draw from Μ and also  draw from them [ΜΝ] tangents to the 
section ΜΣ and ΝΞ. Then, since the  segments ΒΕ and ΔΖ are similar, and the 
tangents ΜΣ and ΝΞ have been drawn from their vertices it will be proved 
thence, as was proved in Theorem 18 of this Book that the triangle ΜΣΚ is simi-
lar to the triangle ΝΞΛ. And ΜΠ and ΝΡ are perpendiculars [to the axes]. There-
fore as pl.ΚΠΣ is to sq.ΜΠ, so pl.ΛΡΞ is to sq.ΝΡ 38. 
 But the ratio pl.ΚΠΣ to sq.ΜΠ is equal to the ratio of the transverse di-
ameter of the section ΑΒ to its latus rectum, as is proved in Theorem 37 of 
Book I. And likewise the ratio pl.ΛΡΞ to sq.ΝΡ is equal to the ratio of the trans-
verse diameter of the section ΓΔ to its latus rectum. 
 Therefore the ratio of the transverse diameter of the section ΑΒ to its 
latus rectum is equal to the ratio of the transverse diameter of the section ΓΔ 
to its latus rectum. Therefore the eidoi of the sections ΑΒ and ΓΔ are similar. 
 But then that  is the case, then the sections are similar, as is proved in  
Theorem 12 of this Book. Therefore the sections ΑΒ and ΓΔ are similar, but we 
had made them dissimilar, that is impossible. Therefore the  segment ΑΕ is not 
similar to the segment ΔΖ. 
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[Proposition] 24 

 
 Furthermore if we make the section ΑΒ a parabola and the section ΓΔ a 
hyperbola for an ellipse, then it is evident that one section is not similar to 
other, because of what we said in Theorem 14 of this Book. 

Then I say that the segments ΒΕ and ΔΖ are dissimilar 39. 
 [Proof]. For if they are similar, then it is possible to draw in them straight 
lines, equal in number parallel to the straight lines ΒΕ and ΔΖ [respectively] , 
such that the ratios of these [straight lines] to the portions they cut off from 
one of the diameters adjacent to the vertices [Μ] of the [first] segment are 
equal to the ratios of the straight lines cutting other diameter to the portions 
they cut off from it adjacent to the vertices [Ν] of the segment, and also that 
the ratio of the base [of the first segment] to [its] diameter is equal to the 
base [of the second segment] to [its] diameter, and [also that] the ratios  of 
the divisions of one of the diameters [formed by these straight lines] are equal 
to the ratios of the divisions of other diameter. Then if will be proved, as it was 
proved for the sections in their entirety in Theorem 14 of this Book, but that  
impossible. But if  one of sections is a hyperbola and other is an ellipse, then 
impossibility of that will be proved at it was proved in Theorem 16 of this Book. 
 

[Proposition] 25 
 

 It is not possible for a part of any of three conic sections to be an arc of a 
circle 40. 
 Let there be the [conic] section ΑΒΓΔ. 
 I say that it is not possible for a part of it to be an arc of a circle. 
 [Proof]. For let, if it is possible, ΑΒΓ be an arc of a circle. We draw  in it 
two straight lines  ΑΒ and ΓΒ not parallel to each other in arbitrary positions. 
We also draw in it ΖΗ not parallel not to them, and draw ΖΘ parallel to ΑΒ and 
ΗΚ parallel to ΓΕ, and [also] draw ΕΔ parallel to ΖΗ. We bisect the straight lines 
we draw at Μ, Ν, Ξ, Ο, Π, and Ρ, and join ΜΝ, ΞΟ, and ΠΡ, then these straight 
lines are diameters to the circle, and they bisect the straight lines drawn by us, 
therefore they are perpendiculars to them. But they are also diameters to the 
section because of what  was proved in Theorem 28 of Book II. Therefore ΜΝ, 
ΞΟ, and ΠΡ are axes of the section. But none of them lies on a straight line with 
its follow because three original straight lines are not parallel. That is impossible 
for none of sections has more than two axes, as is proved in Theorem 50 of 



281 

Book II. Therefore if is not possible for a part of any  of sections to be an arc of 
a circle. 
 

[Proposition] 26 
 

 If ones  are cut on one side [of their axes] by parallel planes from  the 
class of planes which, when continued on the side of the vertex of the cone, 
subtend its exterior angle, then the hyperbolas generated [by these planes] are 
similar but not equal 41. 
 Let there be the cone ΑΒΓ, and let it be cut by two parallel planes, and let 
their intersections with the base [of the cone] be ΘΜ and ΚΝ. We draw from 
the center of the base of the cone the perpendicular ΒΑΗΓ to these straight 
lines. Let the cone be cut by [another] plane passing through ΒΓ and the axis of 
the cone, and let this plane cut the surface of the cone in ΑΒ and ΑΓ. Let the  
intersections of this plane with two parallel planes be ΑΔ and ΖΗ, we continue 
them to [meet continued ΓΑ at] Ο and Ε [respectively].Then I say that the sec-
tion ΘΖΜ is similar to the section ΚΔΝ, but not equal to it. 
 [Proof]. We draw from Α a straight line ΑΠ parallel to ΔΛ and ZH. We 
make the ratio ΟΔ to ΔΞ equal to the ratio sq.ΑΠ to pl.ΒΠΓ, and also the ratio 
ΕΖ to ΖΙ equal to the ratio sq.ΑΠ to pl.ΒΠΓ. Then since ΒΛ is perpendicular to 
ΚΝ, the straight lines drawn in the hyperbola ΚΔΝ to ΔΛ parallel to ΚΝ are equal 
in square to the rectangular planes applied to ΔΞ [which is the latus rectum] and 
in increasing it by a rectangular plane similar to pl.ΟΔΞ as is proved in Theorem 
12 of Book I . 
 Similarly too the straight lines drawn in the hyperbola ΘΖΜ to ΖΗ parallel 
to ΘΜ are equal in square to the rectangular planes applied to ΖΙ  [which is the 
latus rectum] and exceeding it by a rectangular plane similar to pl.ΕΖΙ. And the 
angles formed by ΚΝ with ΔΛ are equal to the angles formed by ΘΜ with ΖΗ be-
cause they are parallel to them. 
      Therefore the sections are similar, as is proved in Theorem 12 of this Book. 
And pl.ΟΔΞ ιs smaller than pl.ΕΖΙ. Therefore the sections ΘΖΜ and ΚΔΝ are  
unequal because of what is proved in Theorem 2 of this Book. 
 

[Proposition] 27 
 

 If a cone is cut by parallel planes  that meet two sides of the triangle 
passing through its axis, but not parallel to the base of the cone and not anti-
parallel to it, then the ellipses [by these planes] are similar, but unequal 42. 
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 Let the cone ΑΒΓ be cut by two parallel planes, and let the intersections 
of these planes with the plane of the base of the cone be ΘΜ and ΚΝ. We draw 
through the center of the base of the cone a straight line ΒΓΗΑ which is a per-
pendicular to ΘΜ and ΚΝ, we cut the cone with [another] plane passing through 
this straight line and through the axis of the cone, and let the intersections of 
this plane with two parallels planes be ΖΕΗ and ΔΟΛ. 
 Then I say that sections ΖΣΕ and ΔΡΟ are similar but not equal. 
 [Proof]. We draw from A a straight line ΑΠ parallel to ΖΗ and ΔΛ. Let each 
of the ratios ΟΔ to ΔΞ and ΕΖ to ΖΙ be equal to the ratio sq.ΑΠ to pl.ΒΠΓ. Then 
since ΒΓΛ is perpendicular to ΚΝ, the straight lines drawn in the ellipse ΔΡΟ to 
ΔΟ parallel to ΚΝ are equal in square to the rectangular planes applied to ΔΞ 
[which is the latus rectum] and decreasing of it by the rectangular planes similar 
to pl.ΞΔΟ, as is proved in Theorem 12 of Book I. Similarly too the straight lines 
drawn in the ellipse ΖΣΕ to ΖΕ parallel to ΘΜ are equal in square the rectangular 
planes applied to ΖΙ [which is the latus rectum] and de creasing of it by the rec-
tangular planes similar to pl.ΕΖΙ. And the angle ΚΛΔ is equal to the angle ΘΗΖ 
because ΚΛ and ΛΔ are parallel to ΘΗ and ΗΖ [respectively]. And pl.ΟΔΞ is simi-
lar to pl.ΕΖΙ. But when that is the case, then two sections are similar, as is 
proved in Theorem 12 of this Book. 
 Therefore the sections ΔΡΟ and ΖΣΕ are similar. But then are unequal be-
cause pl.ΕΖΙ is greater than pl.ΟΔΞ, and it was proved in Theorem 2 of this Book 
that, when that is so then two sections are unequal. 
 

[Proposition] 28  
 

 Want to show how to find  in a given right cone a parabola equal to a 
given parabola 43. 
 Let the given right cone be the cone with the axial triangle ΑΒΓ. Let the 
given parabola be the section ΔΕ with axis ΔΛ and the latus rectum ΔΖ,  and let 
as ΔΖ is to ΑΗ, so sq.ΓΒ is to pl.ΒΑΓ. We draw ΗΘ to ΑΓ. We cut the cone with a 
plane passing through ΗΘ and erected at right angles to the plane ΑΒΓ, let [this 
plane] generate the section ΚΗ whose axis is ΗΘ. 
 Then I say that the section ΚΗ is equal to the section ΔΕ.  
 [Proof]. The perpendiculars drawn in the section ΚΗ to ΗΘ are equal in 
square to the rectangular plane applied a straight line whose ratio to ΑΗ is equal 
to the ratio sq.ΒΓ to pl.ΒΑΓ, as is proved in Theorem 11 of Book I. 
 But the ratio ΔΖ to ΑΗ also is equal to the ratio sq. ΒΓ to pl.ΒΑΓ. There-
fore ΔΖ is equal to the latus rectum of the section ΚΗ. And it was proved in 
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Theorem 1 of this Book that, when that is the case, these  two sections are 
equal. Therefore the section ΔΕ is equal to the section ΚΗ. 
       Then I say that no other section ,apart from this one, can be found in [this] 
cone such that the point of its vertex [which is the end of the axis] lies on the   
straight line ΑΒ [and such that it is equal to the section ΔΕ] 44 for ,if it is pos-
sible to find another parabola equal to the section ΔΕ, then its plane cuts the 
plane of the axial  triangle  of the cone at right angles, and the axis  of the sec-
tion lies in the plane of the triangle ΑΒΓ because the cone is a right cone [and 
similarly for the axis of every section in a right cone]. 
 Therefore if it is possible for another section whose  vertex lies on ΑΒ to 
be equal to the section ΔΕ, then its axis is parallel to ΑΓ, and the point of its 
vertex is different from Η. And the ratio of its latus rectum to the straight line 
cut off by that section from ΑΒ adjacent to Α is equal to the ratio sq.ΒΓ to  
pl.ΒΑΓ. But this [latter] ratio is equal to the ratio ΔΖ to ΑΗ. Therefore ΔΖ is not 
equal to the latus rectum of that other section. 
 But these  two sections are [supposed to be] equal, that is impossible 
because of that was proved in Theorem 1 of this Book. 
 Therefore there cannot be found on ΑΒ the vertex of the axis of another 
section equal to the section ΔΕ. 
 

[Proposition] 29 
 

 We wait to show how to find in a given right cone a section equal to a 
given hyperbola,  when the ratio of the square on the axis of the cone to the 
square on the half of the diameter of the base is not greater than the ratio of 
the transverse diameter [which is the axis of the given section] to the latus 
rectum 45. 
 Let the given cone be the cone on its axial triangle ΑΒΓ, with axis ΑΘ, and 
let the given hyperbola be ΔΕ whose axis ΔϘ and the eidos pl.ΗΔΖ. 
 And first let the ratio sq.ΑΘ to sq.ΘΒ is equal to the ratio ΗΔ  to ΔΖ. We 
draw in [exterior] angle ΒΑΠ the straight line ΠΝ parallel to ΑΘ and equal to ΗΔ,  
And draw through ΠΝ a plane at right angles to the plane of the triangle ΑΒΓ, 
then it will cut the cone, and its intersection will be the hyperbola whose axis ΙΝ.  
Then, since ΑΘ is parallel to ΠΝ, the ratio of ΠΝ [which the transverse diame-
ter] to the latus rectum of [that] section is equal to the ratio sq.ΑΘ to pl.ΓΘΒ, 
as is proved in Theorem 12 of Book I, and [therefore] it also it equal to the ratio 
ΗΔ to ΔΖ. 
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 But ΠΝ is equal to ΗΔ. Therefore ΔΖ is equal to the latus rectum of the 
section whose axis ΙΝ. Therefore the eidos of the section whose axis ΙΝ is equal 
to the eidos of the section ΔΕ, and the section ΔΕ and the section whose axis ΙΝ 
are equal because of what is proved in Theorem 2 of this Book. 
 [Furthermore] no other section can be found equal to the section ΔΕ with 
the vertex of its axis on the straight line ΑΒ. 
 [Proof]. For, if that is possible, then the axis of that section lies  in the 
plane of the triangle ΑΒΓ, as is proved in the preceding theorem ,and the 
triangle ΑΒΓ will be at right angles to the plane in which that other section lies. 
And since that section is a hyperbola, and is equal to the section ΔΕ, its axis will 
meet ΑΓ beyond Α, and the portion of the axis drawn from the triangle to the 
point where it meets ΑΓ will be equal to the straight line ΔΗ, as is proved in 
Theorem 2 of this Book. 
 But this [portion] is not ΠΝ, nor is it parallel to it, for if it were parallel to 
it, it would be unequal to it. And, when that is the case, if a straight line is 
drawn from A parallel to that axis, it will fall either between ΑΘ and ΑΓ, or be-
tween ΑΘ and ΑΒ. 
 Therefore let the straight line that is parallel to it [the axis of other sec-
tion] be ΑΜ. Then as sq.ΑΜ is to pl.ΒΜΓ, so ΔΗ is to ΔΖ, as is proved in Theo-
rem 12 of Book I and Theorem 2 of this Book. But that is impossible for sq.AM 
is greater than sq.ΑΘ, and pl.ΒΜΓ is smaller than pl.ΒΘΓ. 
 Furthermore we [now] make the ratio sq.ΑΘ to sq.ΘΒ smaller than the ra-
tio ΗΔ to ΔΖ, and describe on the triangle ΑΒΓ a circle  ΑΒΓ circumscribing it, 
and continue ΑΘ to [meet the circle at] Σ, then the ratio ΑΘ to ΘΣ is smaller 
than the ratio ΗΔ to ΔΖ. 
 Therefore let the ratio ΑΘ to ΘΧ be equal to the ratio ΗΔ to ΔΖ, and let 
ΡΞ be parallel to ΒΓ. We join ΑΜΞ and ΑΚΡ. Let each of ΠΝ and ΤΟ be equal to 
ΔΗ, and let ΤΟ be parallel to ΑΜ, and ΠΝ parallel to AK. We draw through ΠΝ 
and ΤΟ planes at right angles to the plane of ΑΒΓ, therefore as to generate in 
the cone two hyperbolas on the axes ΛΟ and ΙΝ.Then the ratio ΗΔ to ΔΖ is equal 
to the ratio ΑΘ to ΘΧ, and to the ratios ΑΜ to ΜΞ and sq.ΑΜ to pl.ΑΜΞ. But 
pl.ΑΜΞ is equal to pl.ΒΜΓ. Therefore as ΔΗ is to ΔΖ, so sq.ΑΜ is to pl.ΒΜΓ.  But 
the ratio sq.ΑΜ to pl.ΒΜΓ is equal to the ratio  of ΤΟ [which is the transverse 
diameter of the eidos of the section on the axis ΟΑ] to its latus rectum, as is 
proved in Theorem 12 of Book I. 
 Therefore the eidoi of the section ΔΕ and the section on the axis ΟΑ are 
equal. And it was proved in Theorem 2 of this Book that, when that is the case, 
then the section ΔΕ and the section on the axis ΝΙ are equal. 
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 Similarly too it will be proved that the section ΔΕ is equal to the section 
on the axis ΝΙ. 
 [Furthermore] no other, third section can be found with the vertex of its 
axis on one of ΑΒ and ΑΓ equal to the section ΔΕ. 
 [Proof]. For, if it is possible to find a section other than those mentioned 
sections, then its axis  lies in the plane of ΑΒΓ, as was proved in the case of the 
parabola. Therefore we draw ΑΥ parallel to that axis then we will prove, as we 
proved above, that ΑΥ does not coincide with ΑΚ, nor with ΑΜ, and that the ra-
tio ΔΗ to ΔΖ is equal to the ratio sq.ΑΥ  to pl.ΒΥΓ, and is equal to the ratio  
sq.ΑΥ  to pl.ΑΥΩ because pl.ΑΥΩ is equal to pl.ΒΥΓ. But the ratio sq.ΑΥ to  
pl.ΑΥΩ is equal to the ratio ΑΥ to ΥΩ. Therefore as ΔΗ is to ΔΖ , so ΑΥ is to ΥΩ. 
That is impossible because as ΔΗ is to ΔΖ, so ΑΘ is to ΘΧ, and as ΑΘ is to ΘΧ, 
so ΑΥ is to ΥΨ. 
 Furthermore we [now] make the ratio sq.ΑΘ to sq.ΘΒ greater than the 
ratio ΔΗ to ΔΖ. Then I say that no section can be found in the cone equal to the 
section ΔΕ. 
 [Proof]. For, if it can be found, then we draw ΑΜ parallel to the [trans-
verse] diameter of that section. Then as sq.ΑΜ is to pl.ΒΜΓ, so ΔΗ is to ΔΖ  But 
the ratio sq.ΑΘ to pl.ΒΘΓ is greater than the ratio ΔΗ to ΔΖ. Therefore the ratio 
sq.ΑΜ to pl.ΒΜΓ is smaller than  the ratio sq.ΑΘ to pl.ΒΘΓ.  But sq.ΑΜ is 
greater than sq.ΑΘ and pl.ΒΜΓ is smaller than pl.ΒΘΓ. That is impossible , there-
fore no section can be found in the cone equal to the section ΔΕ. 
 

[Proposition] 30 
 

 We want to show how to find in a given right cone a section equal to a 
given ellipse 46. 
 Let there be the given right cone on the axial triangle ΑΒΓ, and let the 
given ellipse be the section ΔΕ whose axis ΔΗ and the latus rectum ΔΖ. 
 We draw on the triangle ΑΒΓ the circle ΑΒΓ circumscribing it, and make 
the ratio ΑΜ to ΜΞ equal to the ratio ΔΗ to ΔΖ, it is evident that this is easily 
possible, and draw in the triangle ΑΒΓ the straight line ΟΠ parallel to ΑΜ and 
equal to ΔΗ. We draw through ΟΠ a plane cutting the cone and erected at right 
angles to the plane of the triangle ΑΒΓ. Then this will generate in the cone the 
ellipse whose axis ΟΠ, and the ratio of ΟΠ to its latus rectum will be equal to 
the ratio sq.ΑΜ to pl.ΒΜΓ, as is proved in Theorem 13 of Book I. 
 But pl.ΒΜΓ is equal to pl.ΑΜΞ. Therefore the ratio of ΟΠ, which is the 
transverse diameter of that section to its latus rectum, is equal to the ratio  
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sq.ΑΜ to pl.ΑΜΞ. 
But the ratio sq.ΑΜ to pl.ΑΜΞ is equal to the ratio ΑΜ to ΜΞ, and as ΑΜ  

is to ΜΞ, so ΔΗ is to ΔΖ. Therefore the ratio of ΟΠ to the latus rectum of the 
section with axis ΟΠ is equal to the ratio ΔΗ to ΔΖ, and the eidoi of the section 
ΔΕ and of the section with axis ΟΠ are similar and equal. Therefore the sections 
themselves are equal, as is proved in Theorem 2 of this Book. 
 I [also] say that no other section can be found in this cone with that ver-
tex which is closer to Α lying on ΑΒ, which is equal to the section ΔΕ. 
 [Proof].For, if that is possible. Then  we will prove, as we proved in Theo-
rem 28 of this Book. That is its axis lies in the plane of the triangle ΑΒΓ , and 
that its plane is at right angles to the plane of the triangle ΑΒΓ. 
 And, since that section is an ellipse, its axis will meet ΒΓ, and since it is 
equal to the section ΔΕ, its axis is equal to ΔΗ, as is proved in Theorem 2 of this 
Book. And that vertex which is closer to Α lies on ΑΒ. Therefore its axis does 
not coincide with ΟΠ, nor it is parallel to it, and [hence]. When we draw from Α 
a straight line parallel to that axis it will not coincide with ΑΜ. 
 Therefore let it be as ΑϘΦ. Then ΑΦ will cut the arc ΑΓ because it is not 
parallel to ΒΓ. And the ratio of the transverse diameter [of the section] to its  
latus rectum will be equal to the ratio sq.ΑΦ to pl.ΒΦΓ, as is proved in Theorem 
13 of Book I. And it also is equal to the ratio ΔΗ to ΔΖ.  
 But pl.ΒΦΓ is equal to pl. ΑΦϘ . Therefore the ratio sq.ΑΦ to pl.ΑΦ Ϙ is 
equal to the ratio ΔΗ to ΔΖ. 
 But the ratio sq.ΑΦ to pl. ΑΦϘ is equal to the ratio ΑΦ to ΦϘ, and as ΔΗ 
is ΔΖ, so ΑΜ is to ΜΞ. Therefore the ratio ΑΦ to ΦϘ is equal to the ratio ΑΜ to 
ΜΞ, which is impossible. Therefore no other section besides the section with 
axis ΟΠ can be found in this cone equal to the section ΔΕ with the point of that 
vertex which is closer to Α lying on ΑΒ. 
 

[Proposition] 31 
 

 We  want to show how to find a right cone containing a given parabola 
and similar to a given right cone 47. 
 Let the parabola be ΒΑΓ whose axis ΑΛ, and the latus rectum ΑΔ for that 
section, and the given one ΕΖΚ with the axial triangle ΕΖΚ. 
 We draw through ΑΛ a plane ΘΛ at right angles to the plane of the sec-
tion ΒΑΓ, and draw in that plane the straight line ΑΜ, which we make the form 
together with ΑΛ the angle equal to the angle ΕΖΚ. We make the ratio ΔΑ to ΑΜ 
equal to the ratio ΚΖ to ΖΕ,and draw on ΑΜ the triangle ΑΘΜ similar to the tri-
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angle ΕΖΚ, and draw ΘΑ and ΘΜ from Α and Μ, and construct the cone with 
vertex Θ and base the circle drawn on ΑΜ as its diameter, and perpendicular to 
the plane ΑΘΜ. Then the angle ΜΑΛ is equal to the angle ΕΖΚ. 
 But the angle ΕΖΚ is equal to the angle ΘΜΑ. Therefore the angle ΜΑΛ is 
equal to the angle ΘΜΑ.Therefore ΑΛ is parallel to ΘΜ being a side of the axial  
triangle [of the cone]. Therefore the plane in which lies the given section gener-
ates in the cone a parabola. And the ratio ΔΑ to ΑΜ is equal to the ratio ΚΖ to 
ΖΕ and to the ratio ΑΜ to ΜΘ. Therefore the ratio ΑΔ to ΑΜ is equal to the ra-
tio ΑΜ to ΑΘ because ΑΘ is equal to ΜΘ. Therefore the ratio sq.ΑΜ to sq.ΑΘ is 
equal to the ratio ΑΔ to ΑΘ..But sq.ΑΘ is equal to pl.ΑΘΜ. Therefore the ratio 
sq.ΜΑ to pl.ΑΘΜ is equal to the ratio ΔΑ to ΑΘ. Therefore the latus rectum of 
the section generated in the cone is ΔΑ. But it is also the latus rectum of the 
section ΒΑΓ. 
 And  the parabolas with  equal latera recta are [them selves] equal, as is 
proved in Theorem 1 of this Book. Therefore the section ΒΑΓ is placed in the 
cone that we constructed, and the cone that we constructed is similar to the 
cone ΕΖΚ because the triangle ΕΖΚ is similar to the triangle ΑΘΜ. Then I say 
that this section is not found in any other cone a part from this one similar to 
the cone ΕΖΚ with its vertex on this side of the plane of the section. 
 [Proof]. For let, if that is possible, there be another cone containing this 
section and similar to the cone ΕΖΚ. The vertex of this cone is Ι. Let there pass 
through the axis of [this] cone a plane perpendicular to the plane of the given 
section, then it will cut it, and the position of the intersection in which this 
plane cuts that plane will be the axis of the section. 
 But ΑΛ is the axis of the section, therefore ΑΛ is the intersection of these 
two planes. 
 But the plane ΘΛ is at right angles to the plane in which lies the section 
and it passes through ΑΛ Therefore I lies in the plane ΘΛ. Let ΙΝ and ΙΛ be the 
sides of the cone. Then ΙΝ  is parallel to ΑΛ, and the angle ΖΕΚ is equal to the 
angle ΑΙΝ and to the angle ΑΘΜ. Therefore ΑΙ lies on the same straight line as 
ΑΘ, and we continue ΑΜ to [meet ΙΝ at] Ξ. Now the section ΒΑΓ is in the cone 
with vertex Ι. Therefore if we make the ratio of some straight line to ΑΙ equal to 
the ratio sq.ΑΞ to pl.ΑΙΞ, then that straight line will be the latus rectum of the 
section ΒΑΓ. 
 But ΑΔ is the latus rectum of the section ΑΒΓ. Therefore as sq.ΑΞ is to 
pl.ΑΙΞ, so ΔΑ is to ΑΙ. And the ratio sq.ΑΜ is to pl.ΑΘΜ was shown be equal to 
the ratio ΔΑ to ΑΘ.  
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 But as sq.ΑΜ is to pl.ΑΘΜ, so sq.ΑΞ is to pl.ΑΙΞ because of the similarity 
of the triangles. Therefore as ΔΑ is to ΑΘ, so ΔΑ is to ΑΙ, that is impossible.  
 Therefore no other cone can be found containing that section, similar to 
the cone ΖΕΚ, and such that the point of its vertex is on this side of the plane 
in which the section lies. 

           [Proposition] 32 
 

 We want to show how to construct a right cone similar to a given right 
cone containing a given hyperbola 48. 
 [For this problem to be soluble] it is necessary that the ratio of the 
square on the axis of that cone to the square on the radius of its base be not 
greater than the ratio of the transverse diameter of the eidos corresponding to 
the axis of the section to its latus rectum.  
 Let there be the given hyperbola ΒΑΓ whose axis ΑΛ and transverse di-
ameter ΑΝ, and let the eidos corresponding to the axis of this sections be  
pl.ΝΑΔ. Let the given cone be the cone with the axial triangle ΕΖΚ. 
 We continue ΚΕ to Ψ, and draw through ΑΛ the plane ΘΛ at right angles 
to the plane in which lies the section. We draw in this plane on ΝΑ the segment 
ΝΘΑ of a circle admitting  an angle equal to the angle ΨΕΖ, and complete the 
circle and bisect the arc ΝΘΑ at Θ. We draw from Θ the perpendicular ΘΞ to ΑΝ 
[and continue it to meet the circle again at Σ]. 
 And first let the ratio of the square on ΕΗ [which is the axis of the cone] 
to the square on ZH be equal to the ratio ΝΑ to ΑΔ. We continue ΝΘ in a 
straight line from Θ as ΝΜ, and draw ΑΜ parallel to ΘΣ. Then, since the arc ΝΣ 
is equal to the arc ΣΑ, the angle ΝΘΣ is equal to the angle ΣΘΑ.  
 Therefore the angle ΜΑΘ is equal to the angle ΘΜΑ. 
 Therefore we construct the equilateral cone with vertex Θ, and base the 
circle with diameter AM and plane at right angles to the plane ΘΑΛ. 
 Then, when that is so, the plane in which lies the given section generates 
in [this] cone the hyperbola with  whose axis ΑΛ and the transverse diameter 
ΑΝ. And the angle ΑΘΜ is equal to the angle ΖΕΚ because the segment ΑΘΝ 
admits an angle equal to the angle ΖΕΨ. And is equal to ΘΜ, and ΖΕ is equal to 
ΖΚ. Therefore we draw the perpendicular ΘΠ [to AM]. 
 Then as sq.ΕΗ is to pl.ΚΗΖ, so sq.ΘΠ is to pl.ΜΠΑ. 
 But as sq.ΕΗ is to pl.ΚΗΖ, so ΝΑ is to ΑΔ. Therefore as sq.ΘΠ is to 
pl.ΜΠΑ, so ΝΑ is to ΑΔ. Therefore the ordinates in the generated section falling 
on ΑΛ are equal in square to the rectangular planes applied to ΑΔ and increasing 
it by a rectangular plane similar to pl.ΝΑΔ as is proved in Theorem 12 of Book I. 
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And the perpendiculars falling from the section ΒΑΓ on ΑΛ are also equal in 
square to the rectangular planes applied to ΑΔ and increasing it by a rectangular 
plane similar to pl.ΝΑΔ. Therefore the section ΒΑΓ is equal to the section gener-
ated in the cone with vertex Θ and base the circle on  the diameter ΑΜ as is 
proved in Theorem 2 of this Book. 
 And it lies in its plane, and its axis coincides with its axis. Therefore the 
cone with vertex Θ contains the section ΒΑΓ, and it is similar to the cone ΕΖΚ 
because as ΘΠ is to ΠΜ, so ΕΗ  is to ΗΖ. Then I say that no cone, apart from  
one we constructed which is similar to the cone ΕΖΚ and has the point of its 
vertex on the same side of the plane in which lies the section ΑΒΓ as Θ, con-
tains this section. 
       [Proof]. For let, if it is possible, another cone with its vertex at I contain it . 
Then it will be proved, as we proved in the preceding  theorem; that I lies in the 
plane ΘΑΛ. Therefore let the sides of [that] cone be ΙΟ and ΙΑ. Now  that cone 
is similar to the cone ΖΕΚ. Therefore the angle ΑΙΟ is equal to the angle ΖΕΚ, 
and the angle ΖΕΨ is equal to the angle ΑΙΝ. Therefore Ι lies on the arc ΑΘΝ, 
and ΟΙ ,when continued, will pass through Ν. So we join ΣΙ and draw from A the 
straight line ΑΟ parallel to it, and from Ι the straight line ΤΙ  parallel to ΑΝ. Then 
the section ΒΑΓ lies in the cone with vertex Ι, and its axis ΑΛ has been contin-
ued to Ν. Therefore the ratio as sq.ΤΙ is to pl.ΑΤΟ is equal to the ratio of ΝΑ, 
the transverse diameter, to ΑΔ, the latus rectum. 
 But as ΝΑ is to ΑΔ, so sq.ΕΗ is to pl.ΖΗΚ. Therefore as sq.ΙΤ is to 
pl.ΟΤΑ, so sq.ΕΗ is to pl.ΖΗΚ, and the angle ΝΙΣ is equal to the angle ΣΙΑ, and 
they are equal to the angles ΙΑΟ and ΑΟΙ [respectively]. Therefore the angle 
ΙΑΟ is equal to  the angle ΑΟΙ. And the angle ΑΙΟ is equal to the angle ΖΕΚ. 
Therefore the triangle ΑΙΟ is similar to the triangle ΖΕΚ. And we had proved that 
as sq.ΙΤ is to pl.ΟΤΑ, so sq.ΕΗ is to pl.ΖΗΚ. 
 But ΖΗ is equal to ΗΚ. Therefore ΑΤ is equal to ΤΟ. And the ratio ΑΤ to 
ΤΟ is equal to the ratio ΝΙ to ΙΟ and to the ratio ΝΡ to ΡΑ.Therefore ΝΡ is equal 
to ΡΑ. But that is impossible because ΘΣ is a diameter of the circle, and has cut 
ΝΑ at right angles at Ξ. Therefore no cone can be found other than the cone  
which we constructed, which is similar to the cone ΕΖΚ and contains the section 
ΒΑΓ. Furthermore  we make the ratio sq.ΕΗ to sq.ΖΗ smaller than the ratio ΝΑ 
to ΑΔ, and carry out the construction as we did before, then as sq.ΕΗ is to 
pl.ΖΗΚ, so sq.ΘΠ is to pl.ΜΠΑ because of the similarity of two triangles [ΕΖΚ 
and ΘΑΛ]. And pl.ΜΠΑ is equal to sq.ΠΑ and to sq.ΘΞ. And sq.ΘΠ is equal to 
sq.ΑΞ.  Therefore as sq.ΕΗ is to pl.ΖΗΚ, so sq.ΑΞ is to sq.ΘΞ. But sq.ΑΞ is equal 
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to pl.ΣΞΘ. Therefore the ratio sq.ΕΗ to pl.ΖΗΚ is equal to the ratio sq.ΕΗ to 
sq.ΖΗ and equal to the ratio pl.ΣΞΘ to sq.ΣΘ, and equal to the ratio ΣΞ to ΞΘ. 
 But the ratio sq.ΕΗ to sq.ΖΗ is smaller than the ratio ΝΑ to ΑΔ. Therefore 
the ratio ΣΞ to ΞΘ is smaller than the ratio ΝΑ to ΑΔ. Therefore we make the 
ratio ΣΞ to ΞΧ equal to the ratio ΝΑ to ΑΔ, and draw through Χ a straight line 
ΙΧΤo parallel to ΝΑ. We join ΙΝ, ΙΣ, and ΙΑ, and draw from Α the straight line ΑΟ 
parallel to ΙΣ. 
 Then it will be proved, as we proved in the preceding theorem, that the 
triangles ΟΙΑ and ΖΕΚ are isosceles and similar. Therefore if we construct a cone 
with vertex I and base the circle with the diameter ΑΟ and in the plane perpen-
dicular to the plane ΘΑΛ, then the plane in which lies the section ΒΑΓ will cut 
that cone, and from the cutting of the one by the other will result a hyperbola, 
and the axis of that section will be ΑΛ,and its transverse diameter ΑΝ and the 
ratio ΝΑ to ΑΔ is equal to the ratio ΣΞ to ΞΧ and to the ratio ΣΡ to ΡΙ. But the 
ratio ΣΡ to ΡΙ is equal to the ratio pl.ΣΡΙ to sq.ΡΙ, and pl.ΣΡΙ is equal to pl.ΝΡΑ, 
therefore as pl.ΝΡΑ is to sq.ΙΡ, so ΝΑ is to ΑΔ. 
 But as pl.ΝΡΑ is to sq.ΙΡ, so sq.ΙΤ is to pl.ΟΤΑ because the quadrangle 
ΑΤΙΡ is a parallelogram. Therefore as ΝΑ is to ΑΔ, so sq.ΙΤ is to pl.ΑΤΟ. 
 Therefore ΑΔ is the latus rectum of the section generated in the cone 
ΑΙΟ. Thence it will be proved, as we proved in the preceding part of this theo-
rem, that the cone with the vertex I contains the section ΒΑΓ, and it will also be 
contained by another equal to this cone, with the vertex  Ϙ, when ΝϘ and ΑϘ 
are joined and ΝϘ continued. And these two cones will be similar to the cone 
ΕΖΚ. Then I say that no third cone similar to the cone ΖΕΚ, and with the point 
of its vertex on the same side of the plane in which lies the section ΒΑΓ as I can 
contain it. 
 [Proof]. For the point of its vertex will lie on the arc ΑΙΝ, as we proved if 
the preceding theorem. Therefore let it be Υ, we join ΥΦΣ. Then we will prove by 
the converse of the proof we made previously that as ΝΑ is to ΑΔ, so ΣΦ is to 
ΦΥ. But that  is impossible because the ratio ΝΑ to ΑΔ was made equal to the 
ratio ΣΞ to ΞΧ. Therefore  no third one similar to the cone ΕΖΚ contains this 
section. 
 But if the ratio sq.ΕΗ to sq.ΖΗ is greater than the ratio ΝΑ to ΑΔ, then it 
is not possible for a cone similar to the cone ΕΖΚ to contain the section ΒΑΓ. 
       [Proof]. For let, if it is impossible, it be contained by the cone with vertex Ι. 
Then we will prove  by a method like the preceding theorem that as ΣΡ is to ΡΙ, 
so ΝΑ is to ΑΔ. But the ratio ΝΑ to ΑΔ is smaller than the ratio sq.ΕΗ to sq.ΖΗ, 
which we proved  to be equal to the ratio ΣΞ to ΞΘ. Therefore the ratio ΣΡ to ΡΙ 
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is smaller than the ratio ΣΞ to ΣΘ, which is impossible. Therefore no cone [of 
this kind] similar to the cone ΖΕΚ will contain the section ΒΑΓ. 
 

[Proposition] 33 
 

 Let the given ellipse be ΑΒΓ whose major axis ΑΓ, and latus rectum ΑΔ, 
and let given right cone be the cone ΕΖΚ. 
 We want to show  how to construct a right cone similar to a given right 
cone containing a given ellipse 49. 
 We draw through ΑΓ a plane at right angles to the plane in which lies the 
section ΑΒΓ, and draw in it on ΑΓ the arc ΑΘΓ [of a circle] admitting an angle 
equal to the angle ΖΕΚ. We bisect it at Θ, and draw from Θ the straight line ΘΙΑ 
in such way that as  ΘΛ is to ΑΙ , so ΓΑ is to ΑΔ. 
 Similarly too we draw ΘΞ in such way that it is cut [by the circle] in the 
same ratio. We join ΑΙ and ΓΙ, and draw ΙΠ parallel to ΑΓ, and ΑΠ parallel to ΘΛ 
[cutting ΓΙ at Μ]. We construct the cone whose vertex I and base the circle 
with diameter ΑΜ.  Then I say that this cone is similar to the cone EZK, and that 
it contains the section ΑΒΓ. 
 [Proof]. The angle ΘΙΓ is equal to the angle ΘΑΓ because they are in the 
same arc. But the angle ΘΙΓ also is equal to the angle ΙΜΛ because ΘΙ and ΛΜ 
are parallel. But the angle ΜΙΑ is equal to ΑΘΓ. Therefore the remaining angle  
[in the triangle ΙΜΑ] the angle ΙΑΜ is equal to the angle ΘΓΑ. Therefore the tri-
angle ΑΜΙ is similar to the triangle ΑΘΓ. 
 But the triangle ΑΘΓ is similar to the triangle ΕΖΚ, and these triangles are 
isosceles. Therefore the triangle ΑΜΙ is  isosceles and similar to the triangle 
ΕΖΚ. Therefore the cone with vertex Ι and base the circle on diameter ΑΜ is 
similar to the cone ΕΖΚ. And the plane in which lies the section ΑΒΓ  generates 
in this cone the ellipse whose major axis ΑΓ. And  the ratio ΓΑ  to ΑΔ is equal to 
the ratio ΘΛ to ΛΙ and to the ratio pl.ΘΛΙ to sq.ΛΙ.  But pl.ΘΛΙ is equal to pl.ΓΑΛ. 
Therefore as ΓΑ is to ΑΔ, so pl.ΓΑΛ is to sq.ΑΙ. 
 But as pl.ΓΑΛ is to sq.ΑΙ, so sq.ΗΙ is to pl.ΑΠΜ  because thee quadrangle 
ΠΑΛΙ is a parallelogram. Therefore as ΓΑ is to ΑΔ, so sq.ΠΙ is to pl.ΑΠΜ. And ΑΓ 
is the transverse diameter, therefore ΑΔ is the latus rectum of the section gen-
erated in the cone. And it is also the latus rectum of the section ΑΒΓ.  
 Therefore the section ΑΒΓ is contained in the cone that we constructed 
because of what is proved in Theorem 2 of this Book. 
 Similarly too it will be proved that it is contained in another cone with ver-
tex Ν whenever ΑΝ and ΝΓ are drawn. 
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 [Furthermore] no other, third cone similar to the cone ΖΕΚ with the point 
of its vertex on this side of the plane [of ΑΒΓ] contains this section. 
 [Proof]. For, if it is possible that some other contains it, then we will 
prove, as  we proved in the preceding theorem, that if there is drawn through 
its axis a plane at right angles to the plane in which the section lies, then that 
intersection of these two planes is the major of two axes of the section.  
 And we will also prove, as we proved in the case of the hyperbola in the 
preceding theorem that the point of vertex of the cone lies on the arc ΑΘΓ. Let 
this point be Ο, and let the sides of the cone be ΟΑ and ΟΗ. We draw through Ο 
and Θ the straight line ΘΟΡ and draw ΑΣ parallel to ΘΡ, and ΟΣ  parallel to ΑΓ. 
Then the triangle ΟΑΗ is as isosceles, and as sq.ΟΣ is to pl.ΑΣΗ, so ΓΑ is to ΑΔ. 
Therefore as sq.ΟΣ is to pl.ΑΣΗ, so pl.ΓΡΑ is to sq.ΟΡ because the quadrangle 
ΟΣΑΡ is a parallelogram. 
 But pl.ΓΡΑ is equal to pl.ΘΡΟ. Therefore as ΧΑ is to ΑΔ, so pl.ΘΡΟ is to 
sq.ΡΟ,  and this [latter] ratio is equal to the ratio ΘΡ to ΡΟ. Therefore as ΑΓ is 
to ΑΔ, so ΘΡ is to ΡΟ. 
 But the ratio ΑΓ to ΑΔ was also equal to the ratio ΘΛ to ΛΙ. Therefore the 
ratio ΘΡ to ΡΟ is equal to the ratio ΘΛ to ΛΙ, which is impossible. Therefore it is 
not possible for there to be a third cone similar to the cone ΕΖΚ containing this 
section. 
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BOOK SEVEN 
 

Apollonius greets Attalus. 
 Peace be on you. I have sent to you with this letter of mine the seventh 
book of the treatise on Conics. In this book are many wonderful and beautiful 
things on the topics of diameters and the eidoi corresponding to them1, set out 
in detail. All of this is of great use in many types of problems, and there is much 
need for it in the kind of problems which occur in conic sections which we men-
tioned, among those which will be discussed and proved in the eighth book of 
this treatise 2 .  
 

[Proposition] 1 
 

 If the axis of a parabola is continued in a straight line outside of the sec-
tion to a point such that the part of it which falls outside of the section is equal 
to the latus rectum, and furthermore a straight line is drawn from the vertex of 
the section to any point on the section and a perpendicular to the axis dropped 
from where it meets it, then the straight line which was drawn [from the vertex 
is equal in square to the rectangular plane under the straight line between the 
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foot of the perpendicular and the vertex of the section, and the straight line be-
tween of the foot of the perpendicular and the point two which the axis was 
continued 3. 
 Let there be the parabola ΑΒ whose axis ΑΓ. We continue ΓΑ to Δ, let ΑΔ 
be equal to the latus rectum. We draw  from Α the straight line ΑΒ in any posi-
tion [so as to cut  the section again at Β], and drop ΒΓ as perpendicular to ΑΓ. 
Then I say that sq.ΑΒ is equal to pl.ΔΓΑ.  
 [Proof].ΑΓ is the axis of the section, ΒΓ is perpendicular to it, and ΑΔ is 
equal to the latus rectum. Therefore sq.ΒΓ is equal to pl.ΔΑΓ, as is proved in 
Theorem 11 of Book I. 
 Therefore we make sq.ΑΓ common. Then the sum of sq.ΑΓ and sq.ΓΒ is 
equal to the sum of pl.ΔΑΓ and sq.ΑΓ. 
 But the sum of sq.ΑΓ and sq.ΓΒ is equal to sq.ΑΒ, and the sum of pl.ΔΑΓ 
and sq.ΑΓ is equal to pl.ΔΓΑ. Therefore sq.ΑΒ is equal to pl.ΔΓΑ. 
 

[Proposition] 2 
 

 If the axis in a hyperbola is continued in a straight line so that the part of 
it falling outside of the section in the transverse diameter, and a straight line is 
cut off adjacent one of the ends of the transverse diameter such that the 
transverse diameter is divided into two parts in the ratio of the transverse di-
ameter to the latus rectum, and the straight line cut off corresponds to the 
latus rectum, and a straight line  is drawn from that end of the transverse di-
ameter which is the end of the straight line which was cut of to the section, in 
any position, and from the place where [that straight line] meets it, a perpen-
dicular is dropped to the axis, then the ratio of the square on the straight line 
drawn from the end of the transverse diameter to the corresponding plane un-
der two straight lines between the foot of the perpendicular and two ends of 
the straight line which was cut off is equal to the ratio of the transverse diame-
ter to the  excess of it over the straight line which was cut off. And let the 
straight line that was cut off be called the “homologue” 4 . 
 Let the hyperbola be the section whose continued axis ΑΓΕ , and let the 
eidos of the section ΓΔ. Let ΑΘ be cut off from ΑΓ, and let as ΓΘ is to ΘΑ, so 
ΓΑ is to ΑΔ, which is the latus rectum. 
        We draw from Α to the section the arbitrary straight line ΑΒ, and drop ΒΕ 
perpendicular to the axis. Then I say that as sq.ΑΒ is to pl.ΘΕΑ, so ΑΓ is to ΓΘ. 
         [Proof]. We make pl.ΑΕΖ equal to sq.ΒΕ. Therefore as pl.ΑΕΖ is to pl.ΑΕΓ, 
so sq.ΒΕ is to pl.ΑΕΓ. But the ratio sq.ΒΕ to pl.ΑΕΓ is equal to the ratio of the 
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latus rectum [which is ΑΔ] to the transverse diameter [which is ΑΓ], as is 
proved in Theorem 21 of Book I. Therefore the ratio pl.ΑΕΖ to pl.ΑΕΓ is equal to 
the ratio ΔΑ to ΑΓ and to the ratio ΖΕ to ΕΓ, and as ΔΑ is to ΑΓ, so ΑΘ is to ΘΓ. 
Therefore the ratio ΖΕ to ΕΓ is equal to the ratio ΑΘ to ΘΓ. So the ratio ΖΓ to 
ΓΕ is equal to the ratio ΑΓ to ΓΘ, and the ratio ΖΑ to ΘΕ is equal to the ratio ΑΓ 
to ΓΘ. But, when we make ΑΕ a common height, as ΖΑ is to ΘΕ , so pl.ΖΑΕ is to  
pl.ΘΕΑ. Therefore as ΑΓ is to ΓΘ, so pl.ΖΑΕ is to pl.ΑΕΘ. But pl.ΖΑΕ is equal to 
sq.ΑΒ. Therefore as sq.ΑΒ is to pl.ΑΕΘ, so ΑΓ is to ΓΘ . 

 . 
[Proposition] 3 

 
 Let there be the ellipse whose axis ΑΓ and eidos ΓΔ. Let the straight line 
constructed on the continuation of the axis be ΑΘ, and let as ΓΘ is to ΘΑ, so 
ΓΑ is to ΑΔ. 
 If a straight line is constructed on the continuation of one of axes of an 
ellipse, whichever axis it may be, and one of its ends is one of the ends of the 
transverse diameter, and the other end is outside of the section and the ratio of 
it to the straight line between its other end and the remaining and of the  
transverse diameter is equal to the ratio of the latus rectum to the transverse 
diameter, and a straight line is drawn from the common end to the transverse 
diameter and the straight line constructed on the axis to any point on the sec-
tion and from the place where its meet the section a perpendicular is dropped 
to the axis, then the ratio of the square on the straight line which was drawn 
[to the section] to the  pl. two straight lines between the foot of the perpen-
dicular and two ends of the straight line which was constructed on the axis is 
equal to the ratio of the transverse diameter to the straight line between those 
two ends of the transverse diameter and the straight line which was con-
structed that are different from each other. Let the straight line that was con-
structed be called the “comologue”6. 
 From Α let ΑΒ be drawn to the section, and let us drop ΒΕ perpendicular 
to the axis. Then I say that sq.ΑΒ is to pl.ΘΕΑ, so ΑΓ is to ΓΘ. 
 [Proof].We make pl.ΑΕΖ equal to sq.ΒΕ. Then as pl.ΑΕΖ to pl.ΑΕΓ, so 
sq.ΒΕ is to pl.ΑΕΓ. 
 But the ratio sq.ΒΕ to pl.ΑΕΓ is equal to the ratio of the latus rectum 
which is ΑΔ to the transverse diameter which is ΑΓ, as is proved in Theorem 21 
of Book I. Therefore the ratio pl.ΑΕΖ to pl.ΑΕΓ is equal to the ratio ΔΑ to ΑΓ 
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and to the ratio ΖΕ to ΕΓ, and as ΔΑ is to ΑΓ, so ΑΘ is to ΘΓ. Therefore as ΖΕ is 
to ΕΓ, so ΑΘ is to ΘΓ. And as ΖΓ is to ΓΕ, so ΑΓ is to ΓΘ, and as ΖΑ is to ΘΕ, so 
ΑΓ is to ΓΘ. 

But, when we make ΑΕ a common height, as ΖΑ is to ΘΕ, so pl.ΖΑΕ is to 
pl.ΘΕΑ.  Therefore as ΑΓ is to ΓΘ, so pl.ΖΑΕ is to pl.ΑΕΘ. But pl.ΖΑΕ is equal to 
sq.ΑΒ. Therefore as sq.ΑΒ is to pl.ΑΕΘ, so ΑΓ is to ΓΘ 7. 
 

[Proposition] 4 
 

 If a straight line is tangent to a hyperbola or an ellipse, so as to fall on one 
of its diameter, and an ordinate is drawn from the point of contact to that di-
ameter, and from the center a straight line is drawn parallel to the tangent and 
equal to the half of the diameter conjugate with the diameter passing through 
the point of contact, then  the ratio of the square on the tangent to the square 
on the straight line parallel to it is equal to the ratio of the straight line between 
the point of intersection of the tangent and the diameter and the foot of the 
perpendicular to the straight line between the foot of the perpendicular and the 
center 8. 
 Let the diameter of the hyperbola or the ellipse be ΑΓ, and its center Θ, 
and the straight line tangent to the section be ΒΔ. Let ΒΕ be an ordinate to ΓΑΕ 
and let ΘΗ be parallel to ΒΔ, and let ΘΗ be equal to the half of the diameter 
conjugate with  the diameter passing through Β. 
 Then I say that sq.ΔΒ is to sq.ΘΗ, so ΔΕ is to ΕΘ. 
 [Proof]. We draw from Β the diameter ΒΘΖ,  and draw ΑΛ and ΔΚ parallel 
to ΒΕ [and let ΑΛ meets ΒΔ at Ο]. Let the ratio of the straight line Μ to ΒΔ be 
equal to the ratio ΟΒ to ΒΛ. Then Μ is the half of the straight line such that, 
when the rectangular planes applied to it in the hyperbola with the addition of a 
rectangular plane similar to the plane under ΖΒ and the double Μ, and in the el-
lipse with the subtraction of a rectangular plane similar to the plane under the 
double Μ and ΖΒ, the ordinates falling on ΒΘ are equal to those rectangular 
planes. And that has been proved in Theorem 50 of Book I. And ΒΗ is the half of 
the diameter conjugate with the diameter ΒΖ. Therefore pl.ΘΒ,Μ  is equal to 
sq.ΘΗ, as is proved in Theorems 1 and 21 of Book II. And the ratio ΟΒ to ΒΛ is 
equal to the ratio Μ to ΒΔ and to the ratio ΔΒ to ΒΚ. Therefore pl.Μ,ΒΚ is equal 
to sq.ΒΔ. But the ratio pl.Μ,ΒΚ to pl.Μ,ΒΘ is equal to the ratio ΒΚ to ΒΘ. There-
fore the ratio sq.ΒΔ to pl.ΒΘ,Μ is equal to the ratio ΒΚ to ΒΘ. 
 But as for the ratio BK to ΒΘ, it is equal to the ratio ΕΔ  to ΕΘ. And as for 
the rectangular plane pl.ΒΘ,Μ ,it is has we have shown, equal to sq.ΘΗ. 
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[Proposition] 5 

 
 If there is a parabola and one of its diameters is drawn in it, and from the 
vertex of that diameter a perpendicular is dropped to the axis, then the straight 
line such that straight lines drawn from the section to the diameter parallel to 
the tangent drawn from the vertex of the diameter [as ordinates] are equal in 
square to the rectangular planes under the mentioned straight line and the 
segment cut off from the diameter by ordinates [that straight line is the latus 
rectum corresponding to the diameter] is equal to the latus rectum correspond-
ing to the axis larger by the quadruple amount cut off  from it by the perpen-
dicular from the axis adjacent to the vertex of the section 9. 
 Let there be the parabola whose axis ΑΗ, and one of its diameters ΒΙ, and 
let the straight lines such that the perpendiculars  dropped to ΑΗ are equal in    
square analogous rectangular planes be ΑΓ – this is corresponding to the axis .  
We draw from Β the perpendicular ΒΖ to the axis. 
 Then I say that the straight lines drawn from the section to ΒΙ parallel to 
the tangent [ΒΔ] from Β are equal in square to the eidos applied to the straight 
line equal to ΑΓ in creased by the quadruple ΑΖ, that straight line is the latus 
rectum corresponding to the diameter ΒΙ 
 [Proof]. We draw ΕΑ perpendicular to the axis and continue ΙΒ to Ε and 
draw ΒΔ tangent to the section at Β, and draw ΒΗ so that it forms a right angle 
with ΒΔ. Then the triangle ΒΔΗ is similar to the triangle ΒΘΕ. Therefore as ΒΘ is 
to ΒΕ, so ΔΗ is to ΒΔ. Therefore ΔΗ is equal to the half of the latus rectum cor-
responding to the diameter ΒΙ, as is proved in Theorem 49 of Book I. 
 But pl.ΔΖΗ is equal to sq.ΒΖ because the angle ΑΒΗ is right and ΒΖ is per-
pendicular [to ΔΗ]. And sq.ΒΖ is equal to pl.ΓΑΖ. Therefore pl.ΑΖΗ is equal to 
pl.ΓΑΖ. 
 But ΔΖ is equal to the double ΑΖ, as is proved in Theorem 35 of Book I. 
Therefore ΑΓ is equal to the double ΖΗ, and the quadruple ΑΖ is equal to the 
double ΔΖ. Therefore the sum ΑΓ and the quadruple ΑΖ is equal to the double 
ΔΗ. And we have [already] shown that the double ΔΗ is the latus rectum corre-
sponding to the diameter ΒΙ. Therefore the latus rectum corresponding to the 
diameter ΒΙ is equal to the sum of ΑΓ and the quadruple ΑΖ. 
 

[Proposition] 6 
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 If there are constructed on the continuation of the axis of a hyperbola 
two straight lines adjacent to two ends of the axis which is the transverse di-
ameter,  each of them equal to the straight line which we called “homologue”, 
and placed as it is placed, and two conjugate diameters from among the diame-
ters of the section are drawn, and from the vertex of the section a straight line 
is drawn parallel to the upright diameter of two opposite hyperbolas to cut  the 
section, and from the place where it meets it a perpendicular is dropped to the 
axis, then the ratio of the transverse diameter of two conjugate diameters to 
the upright one is equal in square to the ratio  of the straight line between the 
foot of the perpendicular and the end of the more remote of two homologues 
to the straight line between the foot of the perpendicular and the end of the 
nearer of two homologues, and the ratio of the transverse diameter to the latus 
rectum corresponding to it parallel to the second diameter is in length equal to 
the ratio of two straight lines which we mentioned previously to each other in 
length 10. 
 Let there be the hyperbola whose axis ΕΓ , and transverse diameter ΑΓ,   
as the continuation of the axis, and center Θ. Let each of two straight lines ΑΝ 
and ΓΞ be equal to the homologue. Let two conjugate diameters ΖΗ and ΒΚ 
pass through Θ, and let us draw ΑΛ parallel to ΖΗ, and draw the perpendicular 
ΛΜ to ΑΜ. Then I say that the ratio of the square on the transverse diameter 
ΒΚ to the square on the upright  diameter ΖΗ is equal to the ratio ΞΜ to ΜΝ. 
 [Proof]. We join ΓΛ, and draw the perpendicular from Β, and draw from it 
also ΒΔ parallel to ΖΗ. Then that straight line [ΒΔ] is tangent to the section. 
And since ΓΘ is equal to ΘΑ, and ΛΟ is equal to ΟΑ, ΓΛ is parallel to ΒΘ. There-
fore as ΔΕ is to ΕΘ, so ΑΜ is to ΜΓ because of the similarity of the triangles. 
 But as ΔΕ is to ΕΘ, so sq.ΔΒ is to sq.ΘΗ, as is proved in Theorem 4 of this 
Book. Therefore as ΑΜ is to ΜΓ, so sq.ΔΒ is to sq.ΘΗ. And since as sq.ΘΒ is 
sq.ΔΒ, so sq.ΓΛ is to sq.ΑΛ because of the similarity of the triangles [ΘΒΔ and 
ΓΛΑ], and as sq.ΒΔ is to sq.ΘΗ, so ΑΜ is to ΜΓ, the ratio sq.ΘΒ to sq.ΘH is 
compounded of [the ratios] sq.ΓΛ to sq.ΑΛ and ΑΜ to ΜΓ. 
 But the ratio sq.ΓΛ to  sq. ΑΛ is compounded of [the ratios] sq.ΓΛ to  
pl.ΓΜΞ , pl.ΓΜΞ  to  pl.ΑΜΝ , and  pl.ΑΜΝ to sq.ΑΛ. Therefore the ratio sq.ΘΒ 
to sq.ΘΗ is compounded of [the ratios] sq.ΓΛ to pl.ΓΜΞ, pl.ΓΜΞ to pl.ΑΜΝ,  
pl .    to sq.ΑΛ, and ΑΜ to ΜΓ. But the ratio sq.ΓΛ to pl.ΓΜΞ is equal to the ra-
tio ΑΓ to ΑΞ, as is proved in Theorem 2 of this Book, and the ratio pl.ΑΜΝ to 
sq.ΑΛ is equal to the ratio ΓΝ to ΑΓ, as is also proved in Theorem 2 of this 
Book, and the ratio pl.ΓΜΞ to pl.ΑΜΝ is compounded of [the ratios] ΜΞ to ΜΝ 
and ΓΜ to ΑΜ. Therefore the ratio sq.ΘΒ to sq.ΘΗ is compounded of [the ra-
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tios] ΑΓ to ΑΞ, ΓΝ to ΑΓ, ΓΜ to ΑΜ, ΜΞ to ΜΝ, and ΑΜ to ΜΓ. And the ratio 
compounded of these ratios which we  mentioned is equal to the ratio ΜΞ to 
ΜΝ because  the part of it  ΓΝ to ΑΓ, when combined with ΑΓ to ΑΞ, is equal to 
the ratio ΝΓ to ΑΞ, and ΝΓ is equal to ΑΞ, and as for the part of it ΓΜ to ΑΜ, 
when combined with ΑΜ to ΓΜ, it is equal to the ratio of ΓΜ to itself. Therefore 
the ratio compounded of these ratios is equal to the remaining ratio, which is 
the ratio ΜΞ to ΜΝ. Therefore the ratio sq.ΒΘ to sq.ΘΗ is equal to the ratio ΞΜ 
to ΜΝ, and [hence] the ratio sq.ΒΚ to sq.ΖΗ is equal to the ratio ΜΞ to ΜΝ. 
 Furthermore the ratio sq.ΒΚ to sq.ΖΗ is equal to the ratio of ΚΒ to the  
straight line such that straight lines drawn from the section to ΚΒ parallel to ΖΗ 
[are equal in square to corresponding rectangular plane] as is proved in Theo-
rems 1 and 21 of Book II. Therefore the ratio of ΚΒ to the mentioned straight 
line [that is the latus rectum corresponding to ΚΒ] is equal to the ratio ΜΞ to 
ΜΝ. 
 

[Proposition] 7 
 

 If there are constructed on the continuation of the axis of an ellipse two 
straight lines at two ends of it, each  of them equal to the homologue straight 
lines, and two conjugate diameters are drawn in the section, and from the ver-
tex of the section a straight line is drawn parallel to one of the conjugate di-
ameters so as to meet the section [again], and from the place there it meets 
[the section] a perpendicular is dropped to the axis, then the ratio  of the di-
ameter which is not parallel to the straight line drawn to other diameter is equal 
in square to the ratio to each other of two parts [of the straight line between 
the ends of two homologues straight lines which are not the ends of the diame-
ter] into which it is cut by the perpendicular, according to how two homologues 
are placed, if [they are found on the major axis , they are outside the section, 
and if in minor axis, then they are on the axis itself. And the  ratio of the men-
tioned diameter to the straight line such that the ordinates dropped on it are 
equal in square to corresponding rectangular planes is [also]  equal to the men-
tioned ratio 11. 
 Let there be the ellipse whose axis ΑΓ. Let two homologues straight lines 
be ΑΝ and ΓΞ. Let the diameters ΖΗ and ΒΚ be conjugate, in any position. We 
draw ΑΛ parallel to the diameter ΖΗ, and drop from Λ the perpendicular ΛΜ to 
the axis. Then I say that the ratio sq.ΒΚ to sq.ΖΗ is equal to the ratio ΜΞ to 
ΜΝ,and that the ratio of ΚΒ to the straight line such that straight lines drawn to 
it in the section parallel to ΖΗ are equal in square to corresponding rectangular  
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planes, this straight line is the latus rectum, also is equal to the ratio ΜΞ to ΜΝ. 
 [Proof]. We join ΓΛ, and drop the perpendicular ΒΕ from Β and draw from 
it too the straight line  ΒΔ parallel to ΖΗ. Then that  line is tangent to the sec-
tion. And since ΓΘ is equal to ΘΑ and ΛΟ is equal to ΟΑ, ΓΛ is parallel to ΒΘ. 
Therefore as ΔΕ is to ΕΘ, so ΑΜ is to ΜΓ because of the similarity of the 
triangles. 
 But as ΔΕ is to ΕΘ, so sq.ΔΒ is to sq.ΘΗ, because of what is proved in 
Theorem 4 of this Book. Therefore as ΑΜ is to ΜΓ, so sq.ΔΒ is to sq.ΘΗ. And 
since as sq.ΒΘ is to sq.ΒΔ, so sq.ΓΛ is to sq.ΑΛ because of the similarity of two 
triangles, and as sq.ΒΔ is to sq.ΘΗ, so ΑΜ is to ΜΓ. 
 The ratio sq.ΘΒ to sq.ΘΗ is compounded of [the ratios] sq.ΓΛ to sq.ΑΛ 
and ΑΜ to ΜΓ. 
 But the ratio sq.ΓΛ to sq.ΑΛ is compounded of [the ratios] sq.ΓΛ to 
pl.ΓΜΞ, pl.ΓΜΞ to pl. ΑΜΝ, and pl.ΑΜΝ to sq.ΑΛ. Therefore the ratio sq.ΘΒ to 
sq.ΘΗ is compounded of [the ratios sq.ΓΛ to pl.ΓΜΞ, pl.ΓΜΞ to pl.ΑΜΝ, pl.ΑΜΝ 
to sq.ΑΛ, and ΑΜ to ΜΓ. 
 But the ratio sq.ΓΛ to pl.ΓΜΞ is equal to the ratio ΑΓ to ΑΞ, as is proved 
in Theorem 3 of this Book, and the ratio pl.ΑΜΝ to sq.ΑΛ is equal to the ratio 
ΓΝ to ΑΓ, as is also proved in Theorem 3 of this Book, and the ratio pl.ΓΜΞ to 
pl.ΑΜΝ is compounded of [the ratios] ΓΜ to ΑΜ and ΜΞ to ΜΝ, therefore the 
ratio sq.ΘΒ to sq.ΘΗ is compounded of [the ratios] ΑΓ to ΑΞ, ΓΝ to ΑΓ, ΓΜ to 
ΑΜ, ΜΞ to ΜΝ, and ΑΜ  to ΜΓ. 
 And the ratio compounded of those ratios mentioned by us is equal to the 
ratio ΜΞ to ΜΝ because the part of it ΓΝ to ΑΓ, when combined with ΑΓ to ΑΞ 
is equal to the ratio ΓΝ to ΑΞ, and ΓΝ is equal to ΑΞ, and as for the part of it 
ΓΜ to ΑΜ, when combined with ΑΜ to ΓΜ, it is equal to the ratio of ΓΜ to it-
self. Therefore the ratio compounded of these ratios is equal to the remaining 
ratio ΜΞ to ΜΝ. Therefore the ratio sq.ΒΘ to sq.ΘΗ is equal to the ratio ΞΜ to 
ΜΝ. And furthermore the ratio sq.ΒΚ to sq.ΖΗ is equal to the ratio of ΚΒ to the 
straight line by which straight lines drawn from the section to ΚΒ parallel to ΖΗ 
are equal in square to corresponding rectangular planes. Therefore the ratio of 
ΒΚ to the latus rectum corresponding to it  is equal to the ratio ΜΞ to ΜΝ. 
 Hence it will be proved that if the perpendicular dropped from Λ on the 
axis passes through the center Θ, then the diameter ΚΒ will be equal to the di-
ameter ΖΗ because ΜΞ is equal to ΜΝ 12 . 
 

[Proposition] 8 
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 Furthermore we set the diagram for the hyperbola and the ellipse in the 
way it was in Theorems 6 and 7 of this Book, then I say that the ratio of the 
square on ΑΓ which is the transverse diameter to the square on  ΒΚ and ΖΗ 
which are two conjugate diameters, when whey are joined together in a straight 
line is equal to the ratio of pl.ΝΓ,ΜΞ to the square on the straight line equal to 
the sum of ΜΞ and the straight line equal in square to pl.ΝΜΞ 13. 
 [Proof]. We make ΞΙ a mean proportional between ΝΜ and ΜΞ. Then as 
sq.ΑΓ is to sq.ΒΚ, so sq.ΑΘ is to sq.ΘΒ. But sq.ΑΘ is equal to pl.ΔΘΕ, as is 
proved in Theorems 37 and 38 of Book I. Therefore as sq.ΑΓ is to sq.ΒΚ, so  
pl.ΔΘΕ is to sq.ΘΒ. 
 But as pl.ΔΘΕ is to sq.ΘΒ, so pl.ΑΓΜ is to sq.ΓΛ because ΔΒ and ΒΘ are 
parallel to ΑΛ and ΛΓ [respectively]. Therefore the ratio pl.ΑΓΜ to sq.ΓΛ is 
equal to the ratio sq.ΑΓ to sq.ΒΚ. And when we make ΓΜ a common height, as 
ΓΑ is to ΓΝ, so pl.ΑΓΜ is to ΜΓΝ. And  the ratio sq.ΓΛ to pl.ΞΜΓ is equal to the 
ratio ΑΓ to ΑΞ, as is proved in Theorems 2 and 3 of this Book. And ΓΝ is equal 
to ΑΞ because ΑΝ and ΓΞ are two homologue straight lines. Therefore as  
pl.ΑΓΜ is to pl.ΜΓΝ, so sq.ΓΛ is to pl.ΞΜΓ. 
 Therefore permutando as pl.ΑΓΜ is to sq.ΓΛ, so pl.ΜΓΝ is to pl.ΞΜΓ. 
 But we have [already] proved that as pl.ΑΓΜ is to sq.ΓΛ, so sq.ΑΓ is to 
sq.ΒΚ. Therefore the ratio sq.ΑΓ  to sq.ΒΚ is equal to the ratio pl.ΝΓΜ to 
pl.ΞΜΓ and is equal to the ratio ΝΓ to ΞΜ. And as ΝΓ is to ΞΜ, so pl.ΝΓ,ΞΜ is to 
sq.ΜΞ. Therefore as sq.ΛΓ is to sq.ΒΚ, so pl.ΝΓ,ΞΜ is to sq.ΜΞ. 
 Furthermore as sq.ΒΚ is to sq.ΖΗ, so ΞΜ is to ΜΝ, as was proved in two 
preceding theorems. Therefore as ΒΚ is to ΖΗ, so ΜΞ is to ΞΙ because ΞΙ is the 
mean proportional between ΞΜ and ΜΝ. Therefore the ratio ΒΚ to the sum of 
ΒΚ and ΖΗ is equal to the ratio ΜΞ is to ΜΙ, and the ratio of sq.ΒΚ to the square 
on the sum of ΒΚ and ΖΗ is equal to the ratio sq.ΜΞ to sq.ΜΙ. 
 But we have [already] proved that as sq.ΑΓ is to sq.ΒΚ, so pl.ΝΓ,ΞΜ is to 
sq.ΜΞ. Therefore ex a equali the ratio sq.ΑΓ to the square on the sum of ΒΚ 
and ΖΗ is equal to the ratio pl.ΓΝ,ΞΜ to sq.ΜΙ, and ΜΙ is equal to the sum ΜΞ 
and the straight line whose square is equal to pl.ΝΜΞ. Therefore the ratio of 
sq.ΑΓ to the square on the sum of two conjugate diameters ΒΚ and ΖΗ is equal 
to the ratio of pl.ΝΓ,ΜΞ to the square on ΜΙ which is equal to the sum of ΜΞ 
and the straight line whose square is equal to pl.ΝΜΞ. 
 

[Proposition] 9 
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 Furthermore we set out what we have mentioned in the situation of Theo-
rems 6 and 7 of this Book, then I say that the ratio sq.ΑΓ to the square on the 
difference of ΒΚ and ΖΗ is equal to the ratio of pl.ΝΓ,ΜΞ to the square on the 
difference of ΜΞ and Xi, where ΞΙ is the straight line equal in square to  
pl.ΝΜΞ. 
 [Proof]. The ratio of ΚΒ to ΖΗ is equal to the ratio ΜΞ to ΞΙ, as is shown 
in the proof of the preceding theorem. Therefore the ratio sq.ΒΚ to the square 
of the difference of ΒΚ and ΖΗ is equal to the ratio sq.ΜΞ to the square of the 
difference ΜΞ and ΞΙ. 
 But as sq.ΑΓ is to sq.ΒΚ, so pl.ΝΓ,ΜΞ is to sq.ΜΞ, as is proved in the pre-
ceding theorem. Therefore ex the ratio sq.ΑΓ to the square on the difference 
ΒΚ and ΖΗ is equal to the ratio pl.ΝΓ,ΜΞ to the square on the difference of ΜΞ 
and ΞΙ. But sq.ΞΙ is equal to pl.ΝΜΞ. Therefore the ratio sq.ΑΓ to the square on 
the difference of ΒΚ and ΖΗ is equal to the ratio pl.ΝΓ,ΜΞ to the square on the 
difference of ΜΞ and ΞΙ, where ΞΙ  is the straight line equal in square to pl.ΝΜΞ. 
 

 [Proposition] 10 
 

 We again set the diagram as it was in Theorems 6 and 7 of this Book. 
Then I say that the ratio sq.ΑΓ to pl.ΒΚ,ΖΗ is equal to the ratio of ΝΓ to the 
straight line equal in square to pl.ΝΜΞ 15. 
 [Proof]. It has been shown in the proof of Theorem 8 of this Book that as 
sq.ΑΓ is to sq.ΒΚ, so ΝΓ is to ΜΞ. And  is was proved there also that as sq.ΒΚ is 
to pl.ΒΚ,ΖΗ , so ΜΞ is to ΞΙ because the ratio ΜΞ to ΞΙ is equal to the ratio ΚΒ 
to ΖΗ. Therefore as sq.ΑΓ is to pl.ΒΚ,ΖΗ ,so ΝΓ is to ΞΙ. 
 But sq.ΞΙ is equal to pl.ΝΜΞ. Therefore the ratio sq.ΑΓ to pl.ΒΚ,ΖΗ is 
equal to the ratio of ΝΓ to the straight line equal in square to pl.ΝΜΞ. 
 

[Proposition] 11 
 

 Furthermore we set things in the state that we prescribed for the hyper-
bola in Theorem 6 of this Book, then I say that the ratio sq.ΑΓ to the sum of 
sq.ΒΚ and sq.ΖΗ is equal to the ratio ΓΝ to the sum of ΝΜ and ΜΞ 16. 
         [Proof]. As sq.ΑΓ is to sq.ΒΚ, so ΓΝ is to ΜΞ, as was proved in Theorem 
8 of this Book. And the ratio sq.ΒΚ to the sum of sq.ΖΗ and sq.BK is equal to 
the ratio ΜΞ to the sum of ΜΞ and ΝΜ because it was proved in Theorem 6 of 
this Book that as sq.ΒΚ is to sq.ΖΗ, so ΜΞ is to ΜΝ. Therefore a equali the ratio 
sq.ΑΓ to the sum  of sq.ΒΚ and sq.ΖΗ is equal to the ratio ΓΝ to the sum of  
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ΜΞ and ΜΝ. 
 

[Proposition] 12 
 

 In any ellipse the sum of the squares on any two of its conjugate diame-
ters what ever is equal to the sum of the squares on its two axes 17. 
 Let the diagram for the ellipse be as it was in Theorem 7 of this Book. 
 Then the axis is ΑΓ, two conjugate diameters ΒΚ and ΖΗ, and two homo-
logue straight lines ΑΝ and ΧΞ. And the ratio of sq.ΑΓ to the square on other of 
two axes of the section is equal to the ratio of ΑΓ which is the transverse di-
ameter to the latus rectum corresponding [to it], as is proved in Theorem 15 of 
Book I. 

But the ratio of ΑΓ to its latus rectum is equal to the ratio ΓΝ to ΑΝ be-
cause ΑΝ is the homologue straight line. And ΑΝ is equal to ΓΞ. Therefore the 
ratio of sq.ΑΓ to the square other of two axes of the section is equal to the ra-
tio ΝΓ to ΓΞ. And for that reason the ratio of sq.ΑΓ to the sum of sq.ΑΓ and  
the square on other of two axes of the section is equal to the ratio ΝΓ to ΝΞ. 
 Furthermore as sq.ΑΓ is to sq.ΒΚ, so ΝΓ is to ΜΞ, as is proved in the 
proof of Theorem 8 of this Book. And the ratio sq.ΒΚ to the sum sq.ΒΚ and 
sq.ΖΗ is equal to the ratio ΜΞ to the sum ΜΞ and ΝΜ because it was proved in 
Theorem 7 of this Book that as sq.ΒΚ is to sq.ΖΗ, so ΜΞ is to ΜΝ. 
 But the sum of ΜΞ and ΝΜ is equal to ΞΝ. Therefore the ratio sq.ΑΓ to 
the sum of sq.ΒΚ and sq.ΖΗ is equal to the ratio ΝΓ to ΝΞ. And we had 
[already] proved that the ratio ΝΓ to ΝΞ is equal to the ratio sq.ΑΓ to the sum 
of the squares on two axes. Therefore the sum of the squares on two axes is 
equal to the sum of sq.ΒΚ and sq.ΖΗ. 
 

[Proposition] 13  
  

In every hyperbola the difference between the squares on its axes is equal 
to the difference between the squares on any pair of its other conjugate diame-
ters whatever 18. 
 Let the diagram of the hyperbola be as it was in Theorem 6 of this Book. 
Then the ratio of the square on ΑΓ, which is one of the axes to the square on 
the other of two axes of the section, is equal to the ratio of ΑΓ to its latus rec-
tum, as was proved in Theorem 16 of Book I. But the ratio of ΑΓ to its latus 
rectum is equal to the ratio ΓΝ to ΑΝ because ΑΝ  is the homologue straight 
line. And ΑΝ is equal to ΓΞ. Therefore the ratio of sq.ΑΓ to the square on the 
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other of two axes of the section is equal to the ratio ΝΓ to ΓΞ, and therefore 
the ratio of sq.ΑΓ to the difference between sq.ΑΓ and the square on the other 
on two axes of the section is equal to the ratio ΝΓ to ΝΞ. 
 Furthermore as sq.ΑΓ to is sq.ΒΚ, so ΝΓ is to ΜΞ, as is proved in  
Theorem 8 of this Book. And the ratio sq.ΒΚ to the difference between sq.ΒΚ 
and sq.ΖΗ is equal to the ratio ΜΞ to ΝΞ because it was proved in Theorem 6 of 
this Book that as sq.ΒΚ is to sq.ΖΗ, so ΜΞ is to ΜΝ.  
 Therefore ex a equali the ratio sq.ΑΓ to the difference between sq.ΚΒ and 
sq.ΖΗ is equal to the ratio ΝΓ to ΝΞ. And we had [already] proved that the ratio 
of sq.ΑΓ to the difference between sq.ΑΓ and the square on the other of two 
axes of the section is equal to that ratio which is the ratio ΝΓ to ΝΞ. Therefore 
the difference between sq.ΑΓ and the square on the other of two axes of the 
section is equal to the difference between sq.ΒΚ and sq.ΖΗ. 
 

[Proposition] 14 
 

 Furthermore we let the diagram of the ellipse as we represented it in 
Theorem 7 of this Book, then I say that the ratio of the square on the axis ΑΓ 
to the difference between the squares on ΒΚ and ΖΗ is equal to the ratio ΝΓ to 
the double ΜΘ when ΑΛ is parallel to the diameter ΖΗ and ΛΜ is the perpen-
dicular to the axis 19. 
 [Proof]. The ratio sq.ΑΓ to sq.ΒΚ is equal to the ratio ΝΓ to ΜΞ, as is 
proved in Theorem 8 of this Book. And the ratio sq.ΒΚ to the difference be-
tween sq.ΒΚ and sq.ΖΗ is equal to the ratio ΞΜ to the difference between ΞΜ 
and ΜΝ because it was proved in Theorem 7 of this Book that as sq.ΒΚ to 
sq.ΖΗ, so ΜΞ is to ΜΝ. But the difference between ΜΞ and ΜΝ is equal to the 
double ΜΘ. Therefore the ratio sq.ΑΓ to the difference between sq.ΒΚ and 
sq.ΖΗ is equal to the ratio ΝΓ to the double ΜΘ. 
 

[Proposition] 15 
 

 Furthermore we set the diagram for the hyperbola and the diagram for 
the ellipse in the situation we represented in Theorems 6 and 7 of this Book,  
then I say that the ratio of sq.ΑΓ to the square on the straight line which  
bounds together with the diameter ΒΚ the eidos of the section, this straight line 
is the latus rectum corresponding to the diameter ΒΚ, is equal to the ratio of  
pl.ΝΓ,ΜΞ to sq.ΜΝ 20. 

[Proposition] 16 
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 Furthermore we set the diagram as it was in Theorems 6 and 7 of this 
Book, and let the latus rectum corresponding to ΒΚ be Τ, then I say that the ra-
tio sq.ΑΓ to the square on the difference between ΒΚ and Τ is equal to the ratio 
pl.ΝΓ,ΜΞ to the square on the difference between ΜΝ and ΜΞ 21. 
 [Proof]. The ratio ΒΚ to the difference between ΒΚ and Τ is equal to the 
ratio ΜΞ to the difference between ΜΞ and ΜΝ for it was proved in Theorems 6 
and 7 of this Book that as ΒΚ is to Τ, so ΜΞ is to ΜΝ. Therefore the ratio sq.ΒΚ 
to the square on the difference between ΒΚ and Τ is equal to the ratio sq.ΜΞ to 
the square on thee difference between ΜΞ and ΜΝ. 
 

[Proposition] 17 
 
 [Proof]. As ΒΚ is to Τ, so ΜΞ is to ΜΝ, as is proved in Theorems 6 and 7  
of this Book. Therefore the ratio sq.ΒΚ to the square on the sum of ΒΚ and Τ is 
equal to the ratio sq.ΜΞ to the square on the sum of ΜΞ and ΜΝ. But as sq.ΑΓ 
is to sq.ΒΚ, so pl.ΝΓ, ΜΞ is to sq.ΜΞ. Therefore the ratio sq.ΑΓ to the square on 
the sum of ΒΚ and Τ is equal to the ratio pl.ΝΓ,ΜΞ to the square on the sum of 
ΜΞ and ΜΝ. 
 

[Proposition]18 
 

 Furthermore we set the diagram as it was in Theorems of this Book, then I 
say that as sq.ΑΓ is to pl.ΒΚ,Τ ,so ΝΓ is to ΝΜ 23. 
 [Proof]. As sq.ΑΓ is to sq.ΒΚ, so ΝΓ is to ΜΞ, as is proved in the proof of 
Theorem 8 of this Book. But as sq.ΒΚ is to pl.ΒΚ,Τ ,so ΒΚ is to Τ, and as ΒΚ is 
to Τ, so ΜΞ is to ΜΝ, as is proved in Theorems 6 and 7 of this Book. Therefore 
as sq.ΑΓ is to pl.ΒΚ,Τ , so ΝΓ is to ΜΝ. 
 

[Proposition] 19 
 

 Furthermore we set the diagram as is was in Theorems 6 and 7 of this 
Book, then I say that the ratio sq.ΑΓ to the sum of sq.ΒΚ and sq.Τ is equal to 
the ratio pl.ΝΓ,ΜΞ to the sum of sq.ΜΝ and sq.ΜΞ 24. 
 [Proof]. As sq.ΑΓ is to sq.ΒΚ, so pl.ΝΓ,ΜΞ is to sq.ΜΞ , as is proved in 
Theorem 8 of this Book. But the ratio ΒΚ to the sum of sq.ΒΚ and sq.Τ is equal 
to the ratio sq.ΜΞ to the sum of sq.ΜΝ and sq.ΜΞ because it was proved in the 
proof of Theorems 6 and 7 of this Book that as ΚΒ is to Τ, so ΜΞ is to ΜΝ. 
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Therefore the ratio  sq.ΑΓ to the sum of sq.ΒΚ and sq.Τ is equal to the ratio 
 pl.ΝΓ,ΜΞ to the sum of sq.ΜΝ and sq.ΜΞ. 
 

[Proposition] 20 
 
 Furthermore we set the diagram as is was in Theorems 6 and 7 of this 
Book, then I say that the ratio sq.ΑΓ to the difference between  sq.ΒΚ and  
sq.T is equal to the ratio pl.ΝΓ,ΜΞ to the  difference between sq.ΜΝ and  
sq.ΜΝ 25. 
 [Proof]. As sq.ΑΓ is to sq.ΒΚ, so pl.ΝΓ,ΜΞ  to sq.ΜΞ , as is proved in the  
proof of Theorem 8 of this Book.  
 But the ratio sq.ΒΚ to the difference between sq.ΒΚ and sq.Τ is equal to 
the ratio sq.ΜΞ to the difference between sq.ΜΞ and sq.ΜΝ because it was 
proved in Theorems 6 and 7 of this Book that as ΒΚ is to Τ, so ΜΞ is to ΜΝ. 
Therefore the ratio sq.ΑΓ to the difference between  sq.ΒΚ and sq.T is equal to 
the ratio pl.ΝΓ,ΜΞ to the difference between sq.ΜΞ and sq.ΜΝ. 
 

[Proposition] 21 
 

 If there is a hyperbola, and its transverse axis is greater than its upright 
axis, then the transverse diameter of each pair of conjugate diameters among 
its other diameters is greater than  the upright diameter of that pair, and the 
ratio of the greater axis to the smaller axis is greater than the ratio of the 
transverse diameter to the upright diameter among the other conjugate diame-
ters, and the ratio of a transverse diameter nearer to the greater axis to the 
upright diameter conjugate with it is greater than the ratio of a transverse di-
ameter farther [from that axis] to the upright diameter conjugate with it 26.  
 Let there be the hyperbola whose axes ΑΓ and ΙΟ, and let there be two 
other transverse diameters ΒΚ and ΖΗ, and let ΑΓ be greater than ΙΟ. 
 Then I say that ΒΚ is greater than the upright diameter conjugate with it, 
and that the diameter ΖΗ also is greater than the upright diameter conjugate 
with it, and that the ratio ΑΓ to ΟΙ is greater than the ratio of ΒΚ to the upright 
diameter conjugate with it and than the ratio of ΖΗ to the upright diameter con-
jugate with it, and that the ratio of ΒΚ to the upright diameter conjugate with it 
is greater than the ratio of ΖΗ to the upright diameter conjugate with it. 
 [Proof]. We make each of the ratios  ΝΓ to ΑΝ and ΑΞ to ΓΞ equal to the 
ratio of ΓΑ to its latus rectum. Then ΑΝ and ΓΞ  belong to the class of straight 
lines called “homologues”. 



307 

 Therefore we draw ΑΔ parallel to the tangent to the section at Β, and 
make ΑΛ parallel to the tangent to the section at Ζ,  and drop to the greater 
axis the perpendiculars ΔΕ and ΛΜ. Then the ratio of sq.ΒΚ to the square on the 
upright diameter conjugate with it is equal to the ratio ΞΕ to ΕΝ, as is proved in 
Theorem 6 of this Book. 
 And likewise the ratio of sq.ΖΗ to the square on the upright diameter con-
jugate with it is equal to the ratio ΞΜ to ΜΝ. Therefore ΒΚ is greater than the 
upright diameter conjugate with it, and likewise too the diameter ΖΗ is greater 
than the upright diameter conjugate with it.  
 Furthermore the ratio of ΓΑ to its latus rectum is equal to the ratio ΓΝ to 
ΑΝ and is equal to the ratio ΑΞ to ΞΓ. Therefore ΓΝ is equal to ΑΞ, and as ΓΝ is 
to ΑΝ , so ΑΞ is to ΑΝ. But the ratio ΞΕ to ΕΜ is smaller than the ratio ΞΑ to  
AN. Therefore the ratio ΞΑ to ΓΞ  is greater than the ratio ΞΕ to EN. 
 Similarly too it will be proved that the ratio ΞΑ to ΓΞ is greater than the 
ratio ΞΜ to ΜΝ. 
 But as ΞΑ is to ΓΞ, so sq.ΑΓ is to sq.ΙΟ because each of these two ratios 
is equal to the ratio of ΑΓ to its latus rectum, as is proved in Theorem 16 of 
Book I. Therefore the ratio sq.ΑΓ to sq.ΙΟ is greater than the ratio ΞΕ to ΕΝ and 
is greater than ratio ΞΜ to ΜΝ. 
 But the ratio ΞΕ to ΕΝ is equal to the ratio of sq.ΒΚ to the square on the 
upright diameter conjugate with it, and the ratio ΜΞ to ΜΝ is equal to the ratio 
of sq.ΖΗ to the square on the upright diameter conjugate with it. 
 Therefore the ratio sq.ΑΓ to sq.ΙΟ is greater than the ratio of sq.ΒΚ to 
the square on the upright diameter conjugate with it, and is greater than the ra-
tio of sq.ΖΗ to the square on the upright diameter conjugate with it. 
 Therefore the ratio ΑΓ to ΙΟ is greater than the ratio of ΒΚ to the upright 
diameter conjugate with it, and is greater than the ratio of ΖΗ to the upright di-
ameter conjugate with it. 
 Furthermore the ratio ΕΞ to ΝΕ which is equal to the ratio of sq.ΒΚ to the 
square on the upright diameter conjugate with it is greater than the ratio ΞΜ to 
ΜΝ which is equal to the ratio of sq.ΖΗ to the square on the upright diameter 
conjugate with it. Therefore the ratio of ΒΚ to the upright diameter conjugate 
with it is greater than the ratio of ΖΗ to the upright diameter conjugate with it. 
 

[Proposition] 22 
 

 If  there is a hyperbola and its transverse axis is smaller than its upright 
axis, then the transverse diameter of each pair of diameters among the other 
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conjugate diameters is smaller than the upright diameter of that pair,  and the 
ratio of the smaller axis to the greater axis is smaller than the ratio of any of 
the other transverse diameters to the upright diameter conjugate with it, and 
the ratio of a transverse diameter nearer to the smaller axis to the upright di-
ameter conjugate with it is smaller than the ratio of [a transverse diameter] far-
ther [from that axis] to the diameter conjugate with it 27. 
 Let there be the hyperbola whose axes ΑΓ and ΟΙ and center Θ, and with 
two  of its diameter ΒΚ and ΖΗ, and let [the transverse axis] ΑΓ be smaller than 
[the upright axis] ΟΙ. 
 Then I say that each of ΒΚ and ΖΗ is smaller than the upright diameter 
conjugate with it, and that the ratio ΑΓ to ΙΟ is smaller than the ratio of ΒΚ to 
the upright diameter conjugate with it, and [is smaller] than the ratio of ΖΗ to 
the upright diameter conjugate with it, and that the ratio of ΒΚ to the upright 
diameter conjugate with it is smaller than the ratio of ΖΗ to the upright diame-
ter conjugate with it. 
 [Proof]. We make the ratios ΝΓ to ΑΝ equal to the ratio of the diameter  
ΓΑ to its latus rectum, and also equal to the ratio ΑΞ  to ΞΓ. Then ΞΓ and ΑΝ 
belong to the class of straight lines called “homologues”. 
  We draw ΑΔ parallel to the tangent passing through Β,and ΑΛ parallel to 
the tangent  passing through  Ζ, and drop  from  Δ and Λ the perpendiculars ΔΕ 
and ΛΜ to the axis. Then the ratio of the square on the diameter ΒΚ to the  
square on the upright diameter conjugate with it is equal to the ratio ΞΕ to ΕΝ, 
as is proved in Theorem 6 of this Book. 
 And likewise the ratio of sq.ΖΗ to the square on the upright diameter con-
jugate with it is equal to the ratio ΞΜ to ΜΝ. Therefore  the diameter BK is  
smaller than the upright diameter conjugate with it, and the diameter ΖΗ is 
smaller than the upright diameter conjugate with it.  
 Furthermore the ratio of ΓΛ to its latus rectum is equal to the ratio ΓΝ to 
ΑΝ and is equal to the ratio ΑΞ to ΞΓ. Therefore ΓΝ is equal to ΑΞ, and as ΓΝ i 
28. 
            For we set the diameter conjugate with it 29  . 
 [Proof]. Let the major of two axes of the ellipse be ΑΒ, and its minor axis 
ΓΔ, and [two pairs of] its conjugate diameters be  ΕΖ and ΗΚ, and ΝΞ and ΟΠ. 
Let EZ be greater than ΗΚ, its conjugate, and ΝΞ  be  greater than ΟΠ, its con-
jugate, [and let ΕΖ be closer to the major axis than ΝΞ]. 
 We drop from Ε and Ν the perpendiculars ΕΛ and ΝΡ to the axis ΑΒ, and 
drop from  Η and Ο the perpendiculars ΗΜ and ΟΣ to ΓΔ. 
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 Then the ratio pl.ΑΘΒ  to sq.ΘΓ is equal to the ratio pl.ALB to sq.ΑΕ, as is 
proved in Theorem 21 of Book I. 
 But pl.ΑΘΒ is greater than sq.ΘΓ, therefore pl.ΑΛΒ is greater than sq.ΛΕ. 
Therefore ΑΘ is greater ΘΕ, and [hence] ΑΒ is greater than ΕΖ. 
 Furthermore as pl.ΓΘΔ is to sq.ΘΒ, so pl.ΓΜΔ is to sq.ΜΗ. 
 But pl.ΓΘΔ is smaller than sq.ΘΒ. Therefore pl.ΓΜΔ is smaller than sq.ΜΗ. 
Therefore  ΘΔ is smaller than ΘΗ, and [hence] ΓΔ is smaller than ΚΗ. 
 But it was proved that ΑΒ is greater than ΕΖ. Therefore the ratio ΑΒ to 
ΓΔ is greater than ratio ΕΖ to ΚΗ. And the diameter ΕΖ is conjugate with the di-
ameter ΚΗ, and ΚΗ is parallel to the tangent to the section at Β. 
 [Furthermore] the diameter ΠΟ is conjugate with the diameter ΞΝ, and it  
[ΠΟ] is parallel to the tangent to the section at Ν. And the diameter ΟΠ is 
closer to the major axis ΑΒ than is the diameter ΚΗ.  
 And as pl.ΑΛΒ is to pl.ΑΡΒ, so sq.ΛΕ is to sq.ΝΡ, as is proved in Theorem 
21 of Book I. 
 But pl.ΑΡΒ is greater than pl.ΑΛΒ. Therefore sq.ΝΡ is greater than sq.ΕΛ. 
 And the difference between pl.ARB and pl.ΑΛΒ is greater than the differ-
ence  between sq.ΝΡ and sq.ΕΛ because it has been proved that pl.ΑΡΒ is 
greater than sq.ΝΡ. 
 But the difference between pl.ΑΡΒ and pl.ΑΛΒ is equal to the difference 
between sq.ΘΛ and sq.ΘΡ. Therefore the difference between sq.ΘΛ and sq.ΘΡ is 
greater than  the difference between  sq.ΝΡ and sq.ΕΛ. Therefore the sum of 
sq.ΘΛ and sq.ΛΕ is greater than the sum of sq.ΘΡ and sq.ΡΝ. Therefore ΘΕ is 
greater than ΘΝ, and [hence] the diameter ΕΖ is greater than the diameter ΝΞ. 
 Furthermore as pl.ΓΣΔ is to pl.ΓΜΔ, so sq.ΟΣ is to sq.ΗΜ, as is proved in 
Theorem 21 of Book I. But pl.ΓΣΔ is smaller than sq.ΟΣ, and pl.ΓΜΔ is smaller 
than sq.ΜΗ. Therefore the difference between pl.ΓΣΔ and ΓΜΔ is smaller than 
the difference between sq.ΟΣ and sq.ΜΗ. 
 But the difference between pl.ΓΣΔ and pl.ΓΜΔ is equal to the difference 
between sq.ΘΜ and sq.ΘΣ. Therefore the difference between sq.ΘΜ and sq.ΘΣ 
is smaller than  the difference between sq.ΟΣ and sq.ΜΗ. Therefore the sum of 
sq.ΘΜ and sq.ΜΗ is smaller than sq.ΘΣ and sq.ΣΟ. Therefore ΘΗ is smaller than 
ΘΟ, and [hence] the diameter ΗΚ is smaller than the diameter ΟΠ. 
 And when the diameter ΕΖ conjugate with  ΗΚ is greater than the diame-
ter ΞΝ conjugate with ΟΠ, and the diameter ΗΚ is smaller than the diameter ΟΠ, 
then the ratio of ΕΖ to its conjugate ΗΚ is greater than the ratio of ΞΝ to its 
conjugate ΟΠ. 
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[Porism 1] 
 

 And hence it becomes clear that the difference between ΑΒ and ΓΔ is 
greater than the difference between ΕΖ and ΗΚ, and that the difference be-
tween ΕΖ and ΗΚ is greater than  the difference between ΞΝ and ΟΠ, and that 
the difference between sq.ΑΒ and sq.ΓΔ s greater the difference between sq.ΕΖ 
and sq.ΗΚ which is greater than  the difference between esq. and  
sq.ΟΠ. 
 

[Porism 2] 
 

 Then I say that  the straight line under which  and ΑΒ the eidos of the 
section is formed is smaller than the straight line under which and ΕΖ the eidos 
of the section is formed, and that the straight line under which and ΕΖ the eidos 
of the section is formed ,is smaller than the straight line under which and ΞΝ the 
eidos of the section is formed, and that the straight line under which and 
 ΞΝ the eidos of the section is formed is smaller than the straight line under 
 which and ΓΔ the eidos of the section is formed 30. 
 [Proof]. For let ΑΒ be greater than ΟΠ, and ΟΠ be greater than ΗΚ,  and 
ΗΚ be greater than ΓΔ, and ΓΔ be smaller than ΝΞ, and ΞΝ be smaller than ΕΖ, 
and ΕΖ be smaller than ΑΒ. And sq.ΑΒ  is equal to the rectangular plane under 
ΓΔ and the straight line under which and ΓΔ the eidos of the section is formed, 
as is proved in Theorem 15 of Book I. And sq.ΟΠ is equal  to the eidos of the 
section corresponding to ΝΞ, and sq.ΗΚ is equal to the eidos of the section 
corresponding to ΕΖ, and sq.ΓΔ is equal to the eidos of the section  correspond-
ing to ΑΒ. 

[Proposition] 25 
 

 In every hyperbola the straight line equal to [the sum of] its  two axes is 
smaller than  the straight line equal to [the sum of] any other pair whatever of 
its conjugate diameters, and the straight line equal to the sum of a transverse 
diameter closer to the greater axis together with its conjugate diameter is 
smaller than the straight line equal to the sum of a transverse diameter farther 
from the greater axis together with its conjugate diameter 31. 
 Let there be the hyperbola  whose axis ΑΓ and center Θ,  with the some 
of its conjugate diameters ΚΒ and ΖΗ, and ΟΙ and ΥΤ. Then the axis ΑΓ is  either 
equal to the other of two axes of the section or it is unequal to it. Now if it is 
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equal to it, then the diameters ΚΒ and ΖΗ are equal, as is proved in Theorem 23 
of this Book, and likewise the diameter ΥΤ is equal to the diameter ΙΟ. 
 But the diameter ΚΒ is greater than the axis ΓΑ, and the diameter ΥΤ is 
greater than diameter ΚΒ. Thus  what we desired has been proved. 
 But as form [what happens] if the axis ΑΓ is unequal to the other of two 
axes of the section, the difference between sq.ΑΓ and the square on the other 
of two axes of the section is equal to the difference between sq.ΚΒ and sq.ΖΗ 
as is proved in Theorem 13 of this Book. 
 Therefore the straight line equal to [the sum of] two axes is smaller than 
the straight line equal to [the sum of] diameters ΒΚ and ΖΗ. And because the 
difference between sq.ΒΚ and sq.ΖΗ is equal to the difference between sq.ΥΤ 
and sq.ΟΙ the straight line equal to [the sum of] diameters ΒΚ and ΖΗ is smaller 
than the straight line equal to [the sum of] the diameters ΥΤ and ΟΙ. 
 

[Proposition] 26 
 

 In every ellipse the sum of its two axes is smaller than [the sum] of any 
conjugate pair of its diameters, and the sum of any conjugate pair of its diame-
ters which is closer to two axes is smaller than the sum of any conjugate pair of 
its diameters farther from two axes, and the sum of the conjugate pair of its di-
ameter each of which is equal to the other is greater than that of any [other] 
conjugate pair of its diameter 32. 
 Let there be the ellipse whose major axis ΑΒ and minor axis ΓΔ, and con-
jugate diameters ΕΖ and ΚΗ, and ΝΞ and ΟΠ, and ΥΤ and ΡΣ, and let ΕΖ  be 
greater than [its conjugate ΚΗ, and let ΞΝ be greater than [its conjugate] ΟΠ, 
and let ΡΣ be equal to [its conjugate] ΥΤ. 
 Then I say that the  straight line equal to [the sum of] two axes ΑΒ and 
ΓΔ is smaller than  the straight line equal to [the sum of] two diameters ΕΖ and 
ΗΚ, and that the straight line equal to [the sum of] two diameters ΝΞ and ΟΠ, 
and that the greatest of them [the sums of the pairs of conjugate diameters]         
is the straight line equal to [the sum of] two diameters ΡΣ and ΥΤ. 
 [Proof]. The ratio ΑΒ to ΓΔ is greater than the ratio ΕΖ to ΚΗ, as is 
proved in Theorem 24 of this Book. Therefore the ratio of the square on the 
sum ΑΒ and ΓΔ to the sum of sq.ΑΒ and sq.ΓΔ  is smaller than the square on the 
sum ΕΖ and ΚΗ to the sum of sq.ΕΖ and sq.ΚΗ. But the sum of sq.ΕΖ and sq.ΚΗ 
is equal to the sum of sq.ΑΒ and sq.ΓΔ,  as is proved in Theorem 12 of this 
Book. Therefore the square on the sum ΑΒ and ΓΔ is smaller than the square on 
the sum of ΕΖ and ΚΗ. Therefore the straight line equal to the sum of two axes 
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ΑΒ and ΓΔ is smaller than the straight line equal to the sum of two diameters ΕΖ 
and ΚΗ. 
 Similarly too if will be proved that the straight line equal to [the sum of] 
ΕΖ and ΗΚ is smaller than the straight line equal to the sum of two diameters ΡΣ 
and ΥΤ. 
 

[Proposition] 27 
 

 In every ellipse or hyperbola in which two axes are unequal the increment 
of the greater axis over the smaller is greater than the increment of [the 
greater of] any conjugate diameter among its diameters over the diameter con-
jugate with it, and the increment of [the greater of a pair of] them nearer to 
the greater axis over the diameter conjugate with it is greater than the incre-
ment of [the greater of a pair of them] farther [from the major axis] over the 
diameter conjugate with it 33 . 
 Now it has been proved in Theorem 24 of this Book that in case of the 
ellipse that is as we stated, but as for the hyperbola it will be proved as follows. 
We make the axis of the hyperbola ΑΓ. Let some of its conjugate diameters be 
ΚΒ and ΖΗ, and ΤΥ and ΙΟ. 
 Then I say that the difference between ΑΓ and the other axis is greater 
than the difference between ΚΒ and ΖΗ, and that the difference between ΚΒ 
and ΖΗ is greater than the difference between ΤΥ and ΙΟ. 
 [Proof]. The difference between sq.ΑΓ and the square on the other of 
two axes of the section is equal to the difference between sq.ΚΒ and sq.ΖΗ, as 
is proved in Theorem 13 of this Book. And the diameter ΒΚ is greater than the 
axis ΑΓ. Therefore the difference between ΑΓ and the axis conjugate with it is 
greater than the difference between ΚΒ and ΖΗ. 
 Similarly too it will be proved that the difference between ΚΒ and ZH is 
greater than the difference  between ΤΥ and ΙΟ. 
 

[Proposition] 28 
 

 In every hyperbola or ellipse the rectangular plane under its two axes is 
smaller than the rectangular plane under any conjugate pair whatever of its di-
ameters, and of the conjugate diameters for those  in which the greater [of the 
pair] is closer to the greater axis ,the rectangular plane under the diameter and 
the diameter conjugate with it is smaller than rectangular plane under one of 
those in which it is farther from it [the greater axis] and the diameter conjugate 
with it 34 . 
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 Now as for the case of the hyperbola, that will be proved from what we 
said in that precedes. For  each of two axes is smaller than the diameter adja-
cent to it of any pair of conjugate diameters, and those of the [diameters]  
closer two axes are smaller than those farther. 
 But as for the case of the ellipse we make its major axis ΑΒ and the minor 
ΓΔ, and let some of its conjugate diameters be ΕΖ and ΚΗ, ΝΞ and ΟΠ, and ΡΣ 
and ΥΤ, then I say that pl.ΑΒ,ΓΔ is  smaller than pl.ΕΖ,ΚΗ  and that pl.ΕΖ,ΚΗ is 
smaller than pl.ΝΞ,ΠΟ, and pl.ΝΞ,ΠΟ is smaller than pl.ΤΥ,ΡΣ. 
 [Proof].The sum of two axes ΑΒ and ΓΔ is smaller than the sum of two 
diameters ΕΖ and ΗΚ, as is proved in Theorem 26 of this Book, and [hence] the 
square on the sum ΑΒ and ΓΔ is smaller than the square on the sum ΕΖ and ΗΚ. 
 But the sum sq.ΑΒ and sq.ΓΔ is equal to the sum of sq.ΕΖ and sq.ΗΚ,  as 
is proved in Theorem 12 of this Book. Therefore the by subtraction the double 
pl.ΑΒ,ΓΔ is smaller than the double pl.ΕΖ,ΚΗ . Therefore pl.ΑΒ,ΓΔ is smaller than 
pl.ΕΖ,ΚΗ . 
 Similarly too it will be proved that pl.ΕΖ,ΚΗ is smaller than pl.ΝΞ,ΟΡ ,and 
pl.ΝΞ,ΟΠ is smaller than pl.ΥΤ,ΡΣ . 
 

[Proposition] 29 
 

 The differences between  the eidoi corresponding to [each of] the diame-
ters of any hyperbola and [each of] the squares onthose diameters are equal 35 
.  
 Let there be the hyperbola whose axis ΑΓ and center Θ, and let some of 
its conjugate diameters be ΚΒ and ΤΥ, and ΟΥ and ΖΗ, then I say that the dif-
ference between the eidos of the section corresponding to ΑΓ and sq.ΑΓ is 
equal to the difference between the eidos of the section corresponding to ΚΒ 
and sq.ΚΒ, and [also is equal to] the difference between the eidos correspond-
ing to ΤΥ and sq.ΤΥ. 
 [Proof]. The difference between sq.ΑΓ and the square on the other of the 
two axes of the section is equal to the difference between sq.ΚΒ and sq.ΖΗ, and 
[also is equal to] the difference between sq.ΥΤ and sq.ΙΟ, as was proved in 
Theorem 13 in this Book. 
 But as for the eidos of the section corresponding to ΑΓ, it is equal to the 
square on the other of two axes of the section, has we stated in Theorem 16 of 
Book I. And as for the eidos of the section corresponding to ΚΒ, it is equal to 
sq.ΖΗ, and as for the eidos of the section corresponding to ΤΥ, it is equal to 
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sq.ΟΙ. Therefore the difference between the eidos of the section corresponding 
to ΑΓ and sq.ΑΓ is equal to the difference between  the eidos of the section 
corresponding to ΒΚ and sq.ΒΚ, and [also is equal to] the difference between 
the eidos of the section corresponding to ΤΥ and sq.ΤΥ. 
 

[Proposition] 30 
 

 If there is added to [one of] the eidoi corresponding to any of the diame-
ters of an ellipse the square of that diameter [the sum always] comes out equal  
36. 
 Let the center of the ellipse be Θ, and some of its conjugate diameters be 
BK and ΖΗ, and ΤΥ and ΟΙ. 
 Then I say that the eidos of the section corresponding to ΒΚ together 
with sq.ΒΚ is equal to the eidos of the section corresponding to ΤΥ together 
with sq.ΤΥ. 
 [Proof]. The sum of sq.ΒΚ and sq.ΗΖ is equal to the sum of sq.ΥΤ and 
sq.ΟΙ, as is proved in Theorem 12 of this Book. 
 But as for the eidos of the section corresponding to ΒΚ, is equal to sq.ΖΗ, 
and as for sq.ΟΙ, it is equal to the eidos of the section corresponding to ΤΥ, as 
is proved in Theorem 15 of Book I. 
 Therefore the eidos of the section corresponding to ΒΚ together with 
sq.ΒΚ is equal to the eidos of the section corresponding to ΤΥ together with  
sq.ΤΥ 
 

[Proposition] 31 
 

 When a pair of conjugate diameters is drawn in an ellipse or between con-
jugate opposite hyperbolas, then the parallelogram under that pair of diameters 
with angles equal to the angles under the diameter at the center is equal to the 
rectangular plane under two axes 37. 
 Let there be the ellipse or the conjugate opposite hyperbolas whose cen-
ter Θ and axes ΑΒ and ΓΔ , and with one pair of its conjugate diameters ΖΛ and 
ΞΝ. 

Let the tangents [to these section] pass through Ζ and Λ, and Ξ and Ν be 
ΗΡ and ΚΜ, and ΗΚ and ΡΜ. Then ΗΡ and ΚΜ are parallel to the diameter ΞΝ, 
and ΗΚ and ΡΜ are parallel to the diameter ΖΛ, as is proved in Theorems 5 and 
20 of Book II. Therefore the quadrangle ΗΜ is a parallelogram, and its angles are 
equal to the angles under the diameters ΖΛ and ΞΝ at the center Θ. 
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 Then I say that the quadrangle ΜΗ is equal to the rectangular plane under 
two axes ΑΒ and ΓΔ. 
 [Proof]. We drop from Ζ the perpendicular ΖΠ to ΒΘΑ, and make the 
straight line ΠΟ a mean proportional between ΕΠ and ΠΘ. Then as sq.ΑΘ is to 
sq.ΘΓ, so pl.ΘΠΕ is to sq.ΖΠ, as is proved in Theorem 37 of Book I. But pl.ΘΠΕ 
is equal to sq.ΠΟ. Therefore as sq.ΑΘ is to sq.ΘΓ, so sq.ΠΟ is to sq.ΖΠ, and as 
ΑΘ is to ΘΓ, so ΠΟ is to ΖΠ, and as sq.ΑΘ is to pl.ΑΘΓ, so pl.ΟΠ,ΘΕ is to 
pl.ΖΠ,ΘΕ . 
And permutando as sq.ΑΘ is to pl.ΟΠ,ΘΕ , so pl.ΑΘΓ is to pl.ΖΠ,ΘΕ . 
 But sq.ΑΘ is equal to pl.ΕΘΠ, as is proved in Theorem 37 of Book I. 
Therefore as pl.ΕΘΠ is to pl.ΟΠ,ΘΕ , so pl.ΑΘΓ is to pl.ΖΠ.ΘΕ . And ΘΞ is parallel 
to ΖΕ. Therefore as sq.ΖΕ is to sq.ΘΞ, so ΕΠ is to ΠΘ, as is proved in Theorem 4 
of this Book. And  as the triangle ΘΖΕ is to the triangle ΞΘΤ, so sq.ΖΕ is to 
sq.ΘΞ because two triangles are similar. Therefore as the triangle ΘΖΕ is to the 
triangle ΞΘΤ, so ΕΠ is to ΠΘ, and as the double triangle ΘΖΕ is to the double 
the triangle ΞΘΤ, so ΕΠ is to ΠΘ. But the quadrangle ΞΘΖΗ is a mean propor-
tional between the double triangle ΘΖΕ and the double triangle ΞΘΤ. 
 And similarly ΟΠ is a mean proportional between ΕΠ and ΠΘ. Therefore as 
the double triangle ΘΖΕ is to the parallelogram ΘΗ, so ΟΠ is to ΠΘ. 
 But as ΟΠ is to ΠΘ, so pl.ΟΠ,ΘΕ is to pl.ΠΘΕ. Therefore as the double tri-
angle ΘΖΕ is to the quadrangle ΘΗ, so pl.ΟΠ,ΘΕ is to pl.ΠΘΕ. 
 And we had [already] proved that as pl.ΟΠ,ΘΕ is to pl.ΠΘΕ, so pl.ΖΠ,ΘΕ is 
to pl.ΑΘΓ. Therefore as the double triangle  ΘΖΕ is to the quadrangle ΘΗ, so 
pl.ΖΠ,ΘΕ is to pl.ΑΘΓ. But the double triangle ΘΖΕ is equal to pl.ΖΠ,ΘΕ.  There-
fore, the quadrangle ΘΗ is equal to pl.ΑΘΓ, and [hence] the quadruple  quad-
rangle ΘΗ with is [the quadrangle] ΗΜ is equal to the quadruple pl.ΑΘΓ with is 
equal to the rectangular plane under two axes ΑΒ and ΓΔ. Therefore the quad-
rangle ΜΗ is equal to the rectangular plane under two axes ΑΒ and ΓΔ. 
  

[Porisms] 
 

 Thus it has been shown from the preceding theorems that: 
 1) in every hyperbola the sum of the squares on its two axes is smaller 
than [the sum of] the squares on any conjugate pair whatever of its  
diameter , and [the sum is] the squares on a pair of conjugate diameters closer 
to two axes is smaller than [the sum of] the squares on a pair of conjugate di-
ameters farther from two axes 38, 
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 2) and that in every ellipse the difference between the squares  on its 
two axes is greater than the difference between the squares on any conjugate 
pair whatever of its diameters ,and the difference between the squares on [a 
pair of] conjugate diameters close to two axes is grater than the difference be-
tween the squares on [a pair of] conjugate farther from two axes 39,  

3) and that if there is a hyperbola in which the transverse diameter of the 
sides of the eidos of the section corresponding to the axis is greater than the 
latus rectum, then the transverse diameter of [each of] eidoi of the section cor-
responding to the other diameters is greater than its  latus rectum and [in that 
case] the rate of the transverse diameter of the eidos corresponding to that 
axis to the latus rectum is greater than the ratio of every [other] transverse di-
ameter to the  latus rectum of the eidos corresponding to it , this ratio in the 
eidoi corresponding to those transverse diameters closer to the axis is greater 
than in those corresponding to transverse diameters farther from the axis 40 , 

 4) but if the transverse diameter of the eidos corresponding to the axis 
of the hyperbola is smaller than the latus rectum, then other transverse  diame-
ters of other eidoi are smaller than their latera  recta, and the ratio of the 
transverse diameter of the eidos corresponding to that axis to its latus rectum 
is smaller than the ratio of every [other] transverse diameter to the latus rec-
tum of the eidos corresponding to it, and this ratio in the eidoi corresponding to 
those transverse diameters closer to the axis is smaller than in those corre-
sponding to transverse diameter farther from the axis 41, 
 5) and if the eidos of the hyperbola corresponding to the axis is equilat-
eral, then the eidoi of the section corresponding to other diameters are equilat-
eral 42, 
 It has also been shown that 
  6) in every ellipse the transverse diameter of the eidos of the section 
corresponding to the diameters drawn between the major axis and two equal 
conjugate diameters is greater than their latus rectum, and the ratio of it [the 
transverse diameter] to it [the latus rectum in the eidoi corresponding to these 
diameters closer to the major axis is greater than in those corresponding to 
transverse diameters farther from it 43 ,  
 7) but as for the transverse diameter of the eidoi of the ellipse corre-
sponding to the diameters between the minor axis and two equal  conjugate di-
ameters, it is smaller than latus rectum, and the ratio of it [the transverse di-
ameter] to it [the latus rectum in these eidoi corresponding to those diameters 
closer to the minor axis is smaller than in those corresponding the diameters 
farther from it 44. 
 These are  theorems which can be proved from what we proved  in the 



317 

treatment of the diameters and eidoi of sections and their sides, and the ratios 
of the conjugate diameters and corresponding latera recta. 
 

[Proposition] 32 
 

 In every parabola the latus rectum which is the straight line such that the 
ordinates dropped to the axis are equal in square to the rectangular planes un-
der that straight line and the segments of the axis cut off by ordinates is the 
smallest of the latera recta which are the straight lines such that the ordinates 
dropped on the other diameters are equal in square to corresponding rectangu-
lar planes, and the latus rectum corresponding to [one of] those diameters 
closer to the axis is smaller than the latus rectum corresponding to the diame-
ter farther 45. 
 Let there be the parabola ΑΒ whose axis ΑΖ and with two other of its di-
ameters ΒΘ and ΓΗ, and let the latera recta [correspondingly to the diameters 
ΑΖ, ΓΗ, and ΒΘ] be ΑΚ, ΓΛ and ΒΜ [respectively] . 
 I say that ΑΚ is smaller than ΓΛ, and that ΓΛ is smaller than ΒΜ. 
 [Proof]. We drop from Β and Γ the perpendiculars ΒΔ and ΓΕ to the axis. 
Then ΓΛ is equal to the sum of ΑΚ and the quadruple ΕΑ, as is proved in Theo-
rem 5 of this Book. And similarly ΒΜ is equal to the sum of ΑΚ and the quadru-
ple ΑΔ. Therefore ΑΚ is smaller than ΓΛ, and ΓΛ is smaller than ΒΜ . 
 

[Proposition ] 33 
 

If there is a hyperbola, and the transverse diameter of the eidos corresponding 
to the axis is not smaller than its latus rectum, then  the latus rectum of the ei-
dos corresponding to the axis is smaller than the latus rectum of [any of] the 
eidoi corresponding to other diameters of the section, and the latus rectum of 
[any of] the eidoi corresponding to diameters closer to the axis is smaller than 
the latus rectum of the eidoi corresponding to the diameters farther from the 
axis 46 . 
 Let there be the hyperbola whose axis ΑΓ and center Θ, and with two of 
its diameters ΚΒ and ΥΤ. 
 Then I say that the latus rectum of the eidos of the section corresponding 
to ΑΓ is smaller than the latus rectum of the eidos of the section corresponding 
to ΚΒ, and that the latus rectum of the eidos of the section corresponding to 
ΚΒ is smaller than the latus rectum of the eidos of the section corresponding to 
ΥΤ. 
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 [Proof]. First we make the axis ΑΓ equal to the latus rectum to the eidos 
corresponding to it. Then the diameter ΒΚ is equal to the latus rectum of the 
eidos corresponding to it, which can be proved from Theorem 23 of this Book 
and Theorem 16 of Book I. 
 But ΑΓ is smaller than ΒΚ. Therefore the latus rectum of the eidos corre-
sponding to ΑΓ is smaller than the latus rectum of the eidos corresponding to 
ΚΒ.  
 Furthermore the diameter ΤΥ is equal to the latus rectum of the eidos of 
the section corresponding to it. But the diameter ΚΒ is smaller than the diame-
ter ΤΥ. Therefore the latus rectum of the eidos of the section corresponding to 
ΚΒ is smaller than the latus rectum of the eidos of the section corresponding to 
ΥΤ. 
 Furthermore we make the axis ΑΓ greater than  the latus rectum of the 
eidos of the section corresponding to it, and [then] the ratio of ΑΓ to the latus 
rectum of the eidos corresponding to it is greater than  the ratio of ΚΒ to its 
latus rectum,  as is proved from Theorem 21 of this Book and Theorem 16 of 
Book I. And similarly the ratio of ΚΒ to its latus rectum is greater than the ratio 
of ΥΤ to its latus rectum. But the axis ΑΓ is smaller than the diameter ΚΒ, and 
the diameter ΒΚ is smaller than the diameter ΤΥ. Therefore the latus rectum of 
the axis ΑΓ is smaller than the latus rectum of the diameter ΚΒ, and the latus 
rectum of the diameter BK is smaller than the latus rectum of the diameter ΥΤ. 
 

[Proposition] 34 
 

 Furthermore we make ΑΓ smaller than the latus rectum of the eidos cor-
responding to it, but not smaller than the half of the latus rectum of the eidos 
corresponding to it, then I say that again the latus rectum of the eidos corre-
sponding to ΑΓ is smaller than the latus rectum of the eidos corresponding to 
ΚΒ, and that the latus rectum of the eidos corresponding to ΚΒ is smaller than 
the latus rectum of the eidos corresponding to ΤΥ 47  . 
 [Proof]. We make each of the ratios ΓΝ to ΑΝ and ΑΞ to ΞΓ equal to the 
ratio of ΑΓ to the latus rectum of the eidos  corresponding to it , and draw from 
Γ the  straight line ΓΛ parallel to ΚΒ, and the straight line ΓΔ parallel to ΤΥ, and 
drop from Δ and Λ the perpendiculars ΔΕ and ΛΜ to the axis. Then, since each 
of the ratios ΓΝ to ΑΝ and ΑΞ to ΓΞ is equal to the ratio of ΑΓ  to the latus rec-
tum of the eidos corresponding to if. ΓΝ is equal to ΑΞ and ΓΞ equal to ΑΝ. 
 Therefore the ratio of sq.ΑΓ to the square on the latus rectum of the ei-
dos corresponding to it is equal to the ratio pl.ΓΝ,ΑΞ to sq.ΑΝ. 
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 But the diameter ΑΓ is smaller than ΑΝ its  latus rectum . But not smaller 
than the half of the latus rectum. Therefore ΑΝ is greater than  ΑΞ but not 
greater than the double ΑΞ. And the sum of ΜΝ and ΑΝ is greater than the 
double ΑΝ. Therefore the rectangular plane under  ΑΜ and the sum ΜΝ and ΑΝ 
to the rectangular plane under ΑΞ and the sum  of ΜΝ and ΑΝ is smaller than  
the rectangular plane under ΑΜ and the sum ΜΝ and ΑΝ to sq.ΑΝ. Therefore 
the ratio ΑΜ to ΑΞ is smaller than the rectangular plane under ΑΜ and the sum 
ΜΝ and ΑΝ to sq.ΑΝ, and [hence] the ratio ΜΞ to ΑΞ is smaller than the ratio of 
the sum of sq.ΑΝ and the rectangular plane under ΑΜ and the sum of ΜΝ and 
ΑΝ to sq.ΑΝ. But the sum of sq.ΑΝ and the rectangular plane under ΑΜ and the 
sum  of ΜΝ and ΑΝ is equal to sq.ΜΝ. Therefore the ratio ΜΞ to ΑΞ is smaller 
than the ratio sq.ΜΝ to sq.ΑΝ. 
 But the ratio ΜΞ to ΑΞ is equal to the ratio pl.ΓΝ,ΜΞ to pl. ΓΝ,ΑΞ. 
Therefore the ratio pl.ΓΝ,ΜΞ to pl.ΓΝ.ΑΞ is smaller than the ratio sq.ΜΝ to 
sq.ΑΝ. And permutando the ratio pl.ΓΝ,ΜΞ to sq.ΜΝ is smaller than the ratio  
pl.ΓΝ,ΑΞ to sq.ΑΝ. 
 Now as for the ratio pl.ΓΝ,ΞΜ to sq.ΜΝ, is equal to the ratio of sq.ΓΑ to 
the square on the latus rectum of the diameter ΚΒ, as is proved in Theorem 15 
of this Book, and as for the ratio pl.ΓΝ,ΑΞ to sq.ΑΝ, we have [already] proved 
that it is equal to the ratio of sq.ΑΓ to the square of the diameter ΑΓ. 

Therefore the ratio of sq.ΑΓ to the square of the diameter ΒΚ is smaller 
than the ratio of sq.ΑΓ to the square on the latus rectum of the eidos corre-
sponding to it. Therefore the latus rectum of the diameter ΑΓ is smaller than 
the latus rectum of the diameter ΒΚ. 
 Furthermore ΑΝ is not greater than the double ΑΞ. Therefore ΜΝ is 
smaller than the double ΜΞ. And  the sum of ΕΝ and ΜΝ is greater than the 
double ΜΝ. Therefore  pl.ΕΜ,  the sum of ΕΝ and ΜΝ is greater than sq.ΜΝ. 
Therefore the ratio pl. ΕΜ, the sum of ΕΝ and ΜΝ.to pl.ΜΞ, the ratio [the rec-
tangular plane] under ΜΞ and the sum ΜΝ and ΕΝ is smaller than the ratio of 
[the rectangular plane]  under ΕΜ and the sum ΕΝ and ΜΝ to sq.ΜΝ. But the 
ratio [the rectangular plane] under ΕΜ and the sum ΕΝ and ΜΝ to [the rectan-
gular plane] under ΜΞ and the sum of ΜΝ and ΕΝ is equal to the ratio ΕΜ to 
ΜΞ. Therefore the ratio ΕΜ to ΜΞ is smaller than the ratio [the rectangular 
plane] under ΜΕ and the sum ΕΝ and ΜΝ to sq.ΜΝ. Therefore the ratio ΕΞ to 
ΜΞ is smaller than the ratio of the sum sq.ΜΝ and [rectangular plane] under ΜΕ 
and the sum ΕΝ and ΜΝ to sq.ΜΝ. But the sum of sq.ΜΝ and [the rectangular 
plane] under ΜΕ and the sum of ΕΝ and ΜΝ is equal to sq.ΕΝ. Therefore the ra-
tio ΕΞ to ΜΞ is smaller than the ratio sq.ΕΝ to sq.ΜΝ. 



320 

 But the ratio ΕΞ to ΜΞ is equal to the ratio pl.ΓΝ,ΕΞ to pl.ΓΝ,ΜΞ. 
 Therefore  the ratio pl.ΓΝ,ΕΞ to pl.ΓΝ,ΜΞ is smaller than sq.ΕΝ to sq.ΜΝ. 
 And permutando the ratio pl.ΓΝ,ΕΞ to sq.ΕΝ is smaller than pl.ΓΝ,ΜΞ to 
sq.ΜΞ. But as for the ratio pl.ΓΝ,ΕΞ to  sq.ΕΝ, it is equal to the ratio of sq.ΑΓ to 
the square on the latus rectum of the diameter ΤΥ, as is proved in Theorem 15 
of this Book, and as for the ratio pl.ΓΝ,ΜΞ  to sq.ΜΝ, it is equal to the ratio of 
sq.ΑΓ to the square on the latus rectum of the diameter ΚΒ, as is proved in 
Theorem 15 of this Book. 
 Therefore the ratio of sq.ΑΓ to the square on the latus rectum of the di-
ameter ΤΥ is smaller than the ratio of it [sq.ΑΓ] to the square on the latus rec-
tum of the diameter ΚΒ. 
 Therefore the latus rectum of the diameter ΚΒ is smaller than the latus 
rectum of the diameter ΤΥ. And it has already been shown that the latus rectum 
of the diameter ΑΓ is smaller than the latus rectum of the diameter ΚΒ. 
 

[Proposition] 35 
 

 Furthermore we make ΑΓ smaller than the half of the latus rectum of the 
eidos of the section corresponding to it, then I say  that there are two diame-
ters [one] on either side of this axis such that the latus rectum of the eidos 
corresponding to each of them is the double  that [diameter], and that [latus 
rectum] is smaller than  the latus rectum of the eidos corresponding to any 
other of the diameters on that side [of the axis],and the latus rectum of eidoi 
corresponding to the diameters closer to those two diameters is smaller than 
the latus rectum of the eidos corresponding to a diameter farther from them48 . 
 [Proof]. ΑΓ has been cut into two parts Ξ such that the ratio Ξ to ΞΓ is 
equal to the ratio of ΑΓ to its latus rectum, and likewise the ratio ΓΝ to ΝΑ 
[is the same ratio]. And the diameter ΑΓ is smaller than the half of its latus rec-
tum. Therefore ΑΝ is greater than the double ΑΞ. Therefore ΝΞ is greater than  
ΞΑ.  
 Therefore let ΞΜ be equal to ΞΝ, and let ΜΛ be the perpendicular to the 
axis meeting the section at Λ. We join ΓΛ and draw the diameter ΚΒ parallel to 
ΓΛ. Then the ratio ΕΜ to ΜΝ is equal to the ratio of ΒΚ to the latus rectum of 
the eidos corresponding to it, as is proved in Theorem 6 of this Book. 
 Therefore the diameter ΒΚ is the half of the latus rectum of the section 
corresponding to it. 
 Therefore we draw between Α and Β the diameters ΔΕ and ΥΤ, and draw 
from Γ the straight line ΓΡ parallel to the diameter ΔΕ  and the straight line ΓΟ 
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parallel to the diameter ΥΤ, and drop from Ρ and Ο the perpendiculars Ρι and ΟΠ 
to the axis. 
  Now ΜΞ is equal to ΕΝ. Therefore pl.ΜΞι is smaller than sq.ΞΝ we make  
[the rectangular plane] under ιΞ and the sum of ιΝ and ΝΞ common [to both 
sides], then [rectangular plane] under ιΞ and the sum of ΜΝ and Νι is smaller 
than sq.Νι. Therefore the ratio [the rectangular plane] under Μι and the sum of 
ΜΝ and Νι to [the rectangular plane] under ιΞ and the sum of ΜΝ and Νι is 
greater than the ratio [the rectangular plane] under Μι and the sum of ΜΝ and 
Νι to sq.Νι. But the ratio [the rectangular plane] under Μι and the sum of ΜΝ 
and Νι to [the rectangular plane] under Ξι and the sum of ΜΝ and Νι is equal to 
the ratio Μι to Ξι. Therefore the ratio Μι to Ξι is greater than [the rectangular 
plane] under Μι and the sum of ΜΝ and Νι to sq.Νι. Therefore the ratio ΜΞ to 
Ξι is greater than the ratio the sum sq.Νι and [the rectangular plane] under Μι 
and the sum of ΜΝ and Νι to sq.Νι. 
 But the sum of sq.Νι and [the rectangular plane] under Μι and the sum of 
ΜΝ and Νι is equal to sq.ΜΝ. Therefore the ratio ΜΞ to Ξι is greater than the 
ratio sq.ΜΝ to sq.Νι. 
 But the ratio ΜΞ to Ξι is equal to the ratio pl.ΓΝ,ΜΞ to pl.ΓΝ,Ξι. Therefore 
the ratio pl.ΓΝ,ΜΞ to pl.ΓΝΞι is greater than the ratio sq.ΜΝ to sq.Νι 
         And permutando the ratio pl.ΓΝ,ΜΞ to sq.ΜΝ is greater than pl.ΓΝ,ιΞ  to  
sq,Νι. 
 But as for the ratio pl.ΓΝ,ΜΞ to sq.ΜΝ, it is equal to the ratio of sq.ΑΓ 
to the square on the latus rectum of the eidos  corresponding to ΚΒ as is 
proved in Theorem 15 of this Book. And as for the ratio pl.ΓΝ,Ξι to sq.Νι , it is 
equal to the ratio of sq.ΑΓ to the square on the latus rectum of the eidos 
corresponding to ΔΕ as is proved in Theorem 15 of this Book. 
 Therefore the ratio of sq.ΑΓ to the square on the latus rectum of the 
eidos corresponding to KB is greater than the ratio of sq.ΑΓ to the latus rectum 
of the eidos corresponding to ΔΕ . Therefore the latus rectum of the eidos cor-
responding to ΚΒ is smaller than the latus rectum of the eidos corresponding to 
ΔΕ. 
 Furthermore pl.ιΞΠ is smaller than sq.ΝΞ. Therefore it will be proved 
from that, as we proved previously that  the latus rectum of the eidos corre-
sponding to ΔΕ is smaller than the latus rectum of the eidos corresponding to 
ΥΤ. 
 Furthermore pl.ΠΞΑ is smaller than sq.ΝΞ. Therefore the latus rectum of 
the eidos corresponding to ΥΤ is smaller than the latus rectum of the eidos cor-
responding to ΑΓ. 
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 Furthermore we draw two diameters ΖΗ and ΦΧ farther from the axis 
than is the diameter ΒΚ, then I say that the latus rectum of the eidos corre-
sponding to ΒΚ is smaller than the latus rectum of the eidos corresponding to 
ΖΗ, and that the latus rectum of the eidos corresponding to ΖΗ is smaller than 
the latus rectum of the eidos corresponding to ΦΧ. 
 [Proof]. Now we draw from Γ two straight lines ΓΨ and ΓϘ parallel to ΖΗ 
and ΦΧ, and drop from Y and Ϙ the perpendiculars ΨΩ and ϘΣ to the axis. Then 
pl.ΣΞΜ is greater than sq.ΝΞ . Therefore when we go through a procedure like 
the preceding one, it is shown that the ratio pl.ΓΝ,ΞΣ to sq.ΝΣ is smaller than 
the ratio pl.ΝΓ,ΜΞ to sq.ΜΝ, and from that it will be proved that the latus rec-
tum of the eidos corresponding to ΖΗ is greater than the latus rectum of the 
eidos corresponding to ΚΒ. And because pl.ΩΞΣ is greater than sq.ΝΞ  the latus 
rectum of the eidos corresponding to ΦΧ is greater than  the latus rectum of 
the eidos corresponding to ΖΗ. 
 

[Proposition] 36 
  
 Let there be the hyperbola whose axis ΑΓ and center Θ, and with two 
other of its diameters ΔΕ and ΒΚ. 
 If there is a hyperbola, and the eidos corresponding to its axis is not 
equilateral, then the difference between two sides of the eidos corresponding to 
its axis is greater than the difference between the sides of [any of] the eidoi 
corresponding to other diameters , and the difference between the sides of the 
eidoi corresponding to those diameters closer to the axis is greater than the dif-
ference between the sides of the eidoi corresponding to those diameters farther 
from it 49. 
 Then I say that the difference between two sides of the eidos corre-
sponding to ΑΓ is greater than the difference between two sides of the eidos 
corresponding to ΔΕ, and that this [latter] difference is greater than the differ-
ence between two sides of the eidos corresponding to ΒΚ. 
 But we draw ΓΖ and ΓΛ parallel to the diameters ΔΕ and ΒΚ, and drop 
from Λ and Ζ the perpendiculars ΖΠ and ΛΜ to the axis and make each of the 
ratios  ΓΝ to ΝΑ and ΑΞ to ΓΞ equal to the ratio of ΑΓ to the latus rectum of 
the eidos corresponding to it. Then the ratio of sq.ΑΓ to the square on the dif-
ference between  ΑΓ and the latus rectum  of the eidos corresponding to it 
is equal to the ratio pl.ΓΝ,ΑΞ to sq.ΝΞ. And ΓΖ is parallel to the diameter ΔΕ, 
and ΖΠ is the perpendicular to the axis. Therefore the ratio pl.ΓΝ,ΞΠ to the 
square on the difference between ΠΞ and ΠΝ is equal to the ratio of sq.ΑΓ to 
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the square of the difference between ΔΕ and the latus rectum of the eidos cor-
responding to it, as is proved in Theorem 16 of this Book. 
 But the difference between ΠΞ and ΠΝ is equal to ΞΝ. Therefore the ra-
tio of sq.ΑΓ to the square on the difference between ΔΕ and the latus rectum of 
the eidos  corresponding to it is equal to the ratio pl.ΓΝ,ΞΠ to sq.ΞΝ. 
And the ratio pl.ΓΝ,ΞΠ to sq.ΞΝ is greater than the ratio pl.ΓΝ,ΑΞ to sq. ΞΝ. 
 Therefore the ratio of sq.ΑΓ to the square on the difference between ΔΕ 
and the latus rectum of the eidos corresponding to it is greater than ΑΝ the ra-
tio of sq.ΑΓ to the square of the difference between  it and the latus rectum of 
the eidos corresponding to it. Therefore the difference between ΔΕ and the 
latus rectum of the eidos corresponding to it is smaller than the difference be-
tween ΑΓ and the latus rectum of the eidos corresponding to it.  
 Furthermore ΛΓ is parallel to the diameter ΚΒ, and ΛΜ is the perpen-
dicular to the axis. Therefore the ratio pl.ΓΝ,ΞΜ to the square on the difference 
between ΜΞ and ΜΝ is equal to the ratio of sq.ΑΓ to the square on the differ-
ence between ΒΚ and the latus rectum of the eidos corresponding to it as is 
proved in Theorem 16 of this Book. 
  And the ratio pl.ΓΝ,ΞΜ to sq.ΝΞ is greater than the ratio pl.ΓΝ,ΠΞ to 
sq.ΝΞ .Therefore the ratio of sq.ΑΓ to the square on the difference between ΚΒ 
and the latus rectum of the eidos corresponding to it is greater than the ratio of 
sq.ΑΓ to the square on the difference between ΔΕ and the latus rectum of the 
eidos corresponding to it. 
 Therefore the difference between ΔΕ and the latus rectum of the eidos 
corresponding to it is greater than the difference between ΒΚ and the latus rec-
tum of the eidos corresponding to it. 
 

   [Proposition] 37  
 

 In every ellipse for the eidoi of the section corresponding to the diame-
ters greater than their [corresponding] latera recta the difference between two 
sides of the eidos corresponding to the major axis is greater than the difference 
between two sides of [any of] the eidoi corresponding to the remaining diame-
ters, and the difference between two sides of those eidoi corresponding to the 
diameters closer to the major axis is greater than the difference between two 
sides of those eidoi corresponding to the diameters farther [from the major 
axis]. 
 But in the case when the diameters on which the which  the 
corresponding  eidoi are smaller than the latera recta, the difference between 
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two sides of the eidos corresponding to the minor axis is greater  than  differ-
ence  between two sides of the others of these eidoi and the difference be-
tween two sides of those of the eidoi corresponding to the diameters closer to 
the minor axis is greater than the difference between two sides of those eidoi 
corresponding to the diameters farther from it. 
 And the difference between two sides of the eidos corresponding to the 
major axis is greater than the difference between two sides of the eidos corre-
sponding to the minor axis 50.   
 Let there be the ellipse whose  major axis ΑΓ and minor axis ΕΔ, and 
with two of its diameters ΚΒ and ΖΗ, both ΖΗ and ΚΒ being greater than the 
latus rectum of the eidos corresponding to it. 
 Then I say that the difference between ΑΓ and the latus rectum of the 
eidos corresponding to it is greater than the difference between ΒΚ and the 
latus rectum of the eidos corresponding to it, and that the difference between 
ΒΚ and the latus rectum of the eidos corresponding to it is greater than the dif-
ference between ΖΗ and the latus rectum of the eidos corresponding to it. 
 [Proof]. ΑΓ is greater than the latus rectum of the eidos corresponding 
to it, and ΚΒ also is greater than the latus rectum of the eidos corresponding to 
it, and also the latus rectum of the eidos corresponding to ΚΒ is greater than 
the latus rectum of the eidos corresponding to ΑΓ, as is proved in Theorem 24 
of this Book. Therefore the difference between ΑΓ  and the latus rectum of the 
eidos constructed to it is greater than the difference between ΚΒ and the latus 
rectum of the eidos corresponding to it. 
 Similarly too it will be proved that the difference between ΚΒ  and the 
latus rectum of the eidos corresponding to it is greater than the difference be-
tween ΖΗ and the latus rectum of the eidos corresponding to it.  
 Furthermore, we make each of ΒΚ and ΖΗ smaller than the latus rectum 
of the eidos corresponding on it, then I say that the difference between ΔΕ and 
the latus rectum of the eidos corresponding to it is greater than the difference 
between ΖΗ and the latus rectum of the eidos corresponding to it, and that the 
difference between ΖΗ and the latus rectum of the eidos corresponding to it is 
greater than the difference between KB and the latus rectum of the eidos 
corresponding to it. 
 [Proof].  ΔΕ is smaller than ΖΗ, and the latus rectum of the eidos corre-
sponding to ΔΕ is grater than the latus rectum of the eidos corresponding to 
ΖΗ, as is proved in this Book. Therefore the difference between ΔΕ and the latus 
rectum of the eidos corresponding to it is greater than the difference between 
ΖΗ and the latus rectum of the eidos corresponding to it. 



325 

 Similarly too it will be proved that the difference between ΖΗ and the 
latus rectum of the eidos corresponding to it is greater than the difference be-
tween ΚΒ and the latus rectum of the eidos corresponding to it. 
 Furthermore the ratio of the latus rectum of the eidos corresponding to 
ΔΕ to ΔΕ is equal to the ratio of ΑΓ to the latus rectum  of the eidos corre-
sponding to ΑΓ, as is proved in Theorem 15 of Book I. And the latus rectum of 
the eidos corresponding to ΔΕ is greater than ΑΓ, as is proved from Theorem 15 
of Book I. Therefore the difference between ΔΕ and the latus rectum of the ei-
dos corresponding to it is greater than the difference between ΑΓ and the latus 
rectum of the eidos corresponding to it. 
 

[Proposition] 38 
 

 If there is a hyperbola, and the transverse side of the eidos correspond-
ing to its axis is not smaller than one  third of its latus rectum,  then the sum of 
the straight lines bounding each of the eidoi corresponding to its diameters 
which are nor the axes is greater than the sum of the straight lines bounding 
the eidos corresponding to its axis, and the sum the straight lines bounding the 
eidoi corresponding to those diameters closer to the axis is smaller than [the 
sum of] the sides bounding the eidoi corresponding those diameters farther 
from it 51 . 
 Let there be the hyperbola whose axis ΑΓ, ΑΓ being not smaller then 
one third of the latus rectum of the eidos corresponding to it. Let two of its di-
ameters be ΚΒ and ΤΥ. 
 Then I say that [the sum of] the sides bounding the eidos correspond-
ing to ΑΓ is smaller than [the sum of] the sides bounding the eidos correspond-
ing to ΚΒ, and that [the sum of] the sides bounding the eidos corresponding to 
ΚΒ,  is smaller than [ the sum of] the sides bounding the eidos corresponding to 
ΥΤ. 
 [Proof]. We make first the axis ΑΓ not smaller than the latus rectum of 
the eidos corresponding to it. 
 Now the diameter ΚΒ is greater than the axis ΑΓ, and the diameter ΤΥ is 
greater than the diameter ΚΒ, and the latus rectum of the eidos corresponding 
to ΤΥ is greater than the latus rectum of the eidos corresponding to ΚΒ, as is 
proved in Theorem 33 of this Book,  and likewise too the latus rectum of the 
eidos corresponding to ΚΒ is greater than the latus rectum of the eidos corre-
sponding two ΑΓ. Therefore the sum of the diameter ΥΤ and the latus rectum of 
the eidos corresponding to it is greater than the sum of the diameter ΚΒ and 
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the latus rectum of the eidos corresponding to it, and the sum of the diameter 
ΚΒ and the latus rectum of the eidos corresponding to it is greater than the 
sum of the diameter ΑΓ and the latus rectum of the eidos corresponding to it. 
Therefore the sum of the sides bounding the eidos corresponding to ΤΥ is 
greater than the sum of the sides bounding the eidos corresponding to ΚΒ, and 
the sum of these [latter] sides is greater than the sum of the sides bounding 
the eidos corresponding to ΑΓ. 
 

[Proposition] 39 
 

 Furthermore we make ΑΓ smaller than the latus rectum of the eidos cor-
responding to it, but not smaller than one third of the latus rectum of the eidos 
corresponding to it, and let each of the ratios ΓΝ to ΑΝ and ΑΞ to ΓΞ be equal 
to the ratio of ΑΓ to the latus rectum of the eidos corresponding to it, and draw 
from Γ two straight lines ΓΔ and ΓΛ parallel to the diameters ΥΤ and ΚΒ [re-
spectively], and drop from Δ and Λ the perpendiculars ΔΕ and ΛΜ to the axis. 
Then the ratio of ΑΧ to the latus rectum of the eidos corresponding to it is 
equal to the ratio ΑΞ to ΞΓ, and ΑΓ is not smaller than one third of the latus 
rectum of the eidos corresponding to it. Therefore ΑΞ is not smaller than one 
third of ΑΝ. Therefore ΑΞ is not smaller than the quarter of the sum of ΝΑ and 
ΑΞ. Therefore [the rectangular plane] under the quadruple ΑΞ and the sum of 
ΝΑ and ΑΞ is not smaller than the square of the sum of ΝΑ and ΑΞ. Therefore 
the ratio the quadruple [the rectangular plane] under ΑΜ and the sum ΝΑ and 
ΑΞ to the quadruple [the rectangular plane] under ΑΞ and the sum of ΝΑ and 
ΑΞ is not greater than the quadruple [the rectangular plane] under ΑΜ and the 
sum p\of ΝΑ and ΑΞ to the square on the sum of ΝΑ and ΑΞ. Therefore the ra-
tio ΑΜ to ΑΞ is not greater than the ratio the quadruple [the rectangular plane] 
under ΑΜ and the sum of ΝΑ and ΑΞ to the square on the sum ΝΑ and ΑΞ. And 
componendo the ratio ΜΞ to ΞΑ is not greater than the ratio the quadruple sum 
of the square on the sum of ΝΑ and ΑΞ and [the rectangular plane] under ΑΜ 
and the sum of ΝΑ and ΑΞ to the square on the sum of ΝΑ and ΑΞ. 
 But the quadruple sum of the square of the sum of ΝΑ and ΑΞ and [the 
corresponding  plane] under ΑΜ and the sum of ΝΑ and ΑΞ is smaller than the 
square on the sum of ΜΝ and ΜΞ. Therefore the ratio ΜΞ to ΞΑ is smaller than 
the ratio of the square on the sum of ΜΝ and ΜΞ to the square on the sum of 
ΑΝ and ΑΖ. 
 But the ratio ΜΞ to ΑΞ is equal to the ratio of pl.ΓΝ,ΜΞ to pl.ΓΝ,ΑΞ . 
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 Therefore the ratio pl.ΓΝ,ΜΞ to pl.ΓΝ,ΑΞ is smaller than the ratio square 
on the sum of ΜΝ and ΜΞ to the square on the sum of ΑΝ and ΑΞ. 
 And the ratio pl.ΓΝ,ΜΞ to the square on the sum of ΜΝ and ΜΞ is smaller 
than the ratio pl.ΓΝ,ΑΞ to the square of the sum of ΑΝ and ΑΞ. 
 But as for the ratio pl.ΓΝ,ΜΞ to the square on the sum of ΜΝ and ΜΞ, it 
is equal to the ratio of sq.ΑΓ to the square on the diameter ΚΒ together with 
the latus rectum of the eidos corresponding to it, as is proved in Theorem 17 of 
this Book, and as for the ratio pl.ΓΝ,ΑΞ to the square on the sum of ΑΞ and ΑΝ, 
it is equal to the ratio of sq.ΑΓ to the square on the diameter ΑΧ together with 
the latus rectum of the eidos corresponding to it. 
 Therefore the ratio of sq.ΑΓ to the square on [the sum of] two sides of 
the eidos corresponding to KB is  smaller than the ratio of sq.ΑΓ to the square 
on [the sum of] two sides of the eidos corresponding to ΑΓ. Therefore the sum 
of two sides of the eidos corresponding to ΚΒ is greater than the sum of two 
sides of the eidos corresponding to ΑΓ. And therefore the sum of the sides 
bounding the eidos corresponding to ΚΒ is greater than the sum of the sides 
bounding the eidos corresponding to ΑΓ. 
 Furthermore ΜΞ is greater than the quarter of the sum of ΜΝ and ΜΞ, 
therefore the quadruple [the rectangular plane] under ΜΞ and the sum ΝΜ and 
ΜΞ is greater then the square on the sum of ΜΝ and ΜΞ. Therefore it will be 
proved from that, as it was proved above, that the ratio pl.ΓΝ,ΞΕ to the square 
on the sum of ΝΕ and ΕΞ is smaller than the ratio pl.ΓΝ,ΜΞ to the square for the 
sum of ΜΝ and ΜΞ. 
 But as for the ratio pl.ΓΝ,ΕΞ to the square on the sum of ΝΕ and ΕΞ, it is 
equal to the ratio of sq.ΑΓ  to the square on [the sum of] two sides of the  ei-
dos corresponding to ΤΥ, as is proved in Theorem 17 of this Book. And for that 
reason the ratio pl.ΓΝ,ΜΞ to the square on the sum of ΜΝ and ΜΞ is equal to 
the ratio of sq.ΑΓ to the square on [the sum of] two sides of the eidos corre-
sponding to ΚΒ. Therefore the ratio of sq.ΑΓ to the square on [the sum of] two 
sides  of the eidos corresponding to ΤΥ is smaller than its ratio to the square on 
[the sum of] two sides of the eidos corresponding to ΚΒ. Therefore the sum of 
two sides of the eidos corresponding to ΤΥ is greater than the sum of two sides 
of the eidos corresponding to ΚΒ. And therefore the sum of [four] sides of the 
eidos corresponding to ΤΥ is greater than the sum of [four] sides of the eidos 
corresponding to ΚΒ. 
 

[Proposition] 40 
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 If there is a hyperbola, and its transverse axis is smaller than one third of 
its  latus rectum, then there are two diameters, [one] on either side of its axis, 
each of which is equal to one third of the latus rectum of the diameter, and the 
sum of the sides bounding the eidos corresponding to each of two diameters is 
smaller than [the sum of] sides bounding any of the eidoi corresponding to the 
diameters on that side [of the axis], and sum of the sides bounding the eidoi 
constructed on the diameters closer to [that diameter] is smaller than [the sum 
of] the sides bounding the eidoi corresponding to [the diameters] farther from 
it 53. 
         Therefore we make the diagram in Theorem 35 in the same way as it was. 
Then ΑΞ is smaller than ΑΝ, and therefore ΑΞ is smaller than one the half of ΞΝ. 
Therefore we make ΜΞ equal to the half of ΞΝ, and drop from Μ the perpen-
dicular ΜΛ to the axis, and join ΓΛ and draw the diameter ΚΒ parallel to ΓΛ. 
Then the ratio ΜΞ to ΜΝ is equal to the ratio of ΚΒ to the latus rectum of the 
eidos corresponding to it, as is proved in Theorem 6 of this Book. 
 But ΜΞ is equal to one third of ΜΝ. Therefore ΚΒ is one third of the latus 
rectum of the eidos corresponding to it. 
 Therefore let two diameters ΔΕ and ΤΥ fall anywhere between Α and Β, 
we draw ΓΡ and ΓΟ [respectively] parallel to them, and drop Ρι and ΟΠ as per-
pendiculars to the axis. Then ΜΞ is equal to the quarter of the sum ΜΞ and ΜΝ. 
Therefore the square of the sum of ΜΝ and ΜΞ is greater than the quadruple 
[rectangular plane] under ΜΞ and the sum of ΜΝ and Ξι. Therefore we subtract 
the quadruple [rectangular plane] under Μι and the sum of ΜΝ and Ξι from both 
of two [sides] and there remains the square on the sum of Νι and Ξι is greater 
than the quadruple [rectangular plane] under Ξι and the sum of ΜΝ and Ξι. 
Therefore the ratio of the quadruple [rectangular plane] under Ξι and the sum 
of ΜΝ and Ξι to the quadruple [rectangular plane] under Μι and the sum of ΜΝ 
and Ξι is greater than its ratio to the square on the sum of Νι and Ξι. 
 But the ratio the quadruple [rectangular plane] under Μι and the sum of 
ΜΝ and Ξι to the quadruple [rectangular plane] under Ξι and the sum of ΜΝ and 
Ξι is equal to the ratio Μι to Ξι. Therefore the ratio Μι to Ξι is greater than the 
ratio the quadruple [rectangular plane] under Μι and the sum of ΜΝ and Ξι to 
the square on the sum of Νι and Ξι. 
 And componendo the ratio ΜΞ to Ξι is greater than the ratio of the sum 
of the square on the sum of ΝΜ and Ξι and the quadruple [rectangular plane} 
under Μι and the sum of ΜΝ and Ξι to the square on the sum of Νι and Ξι. 
 But the sum of the square on the sum of Νι and Ξι and the quadruple  
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[rectangular plane] under Μι and the sum of ΜΝ and Ξι is equal to the square 
on the sum of ΜΝ and ΜΞ. Therefore the ratio ΜΞ to Ξι is greater than the ratio 
the square on the sum of ΜΝ and ΜΞ to the square on the sum of Νι and Ξι. 
 But the ratio ΝΞ to Ξι is equal to pl.ΓΝ,ΜΞ to pl.ΓΝΞι. Therefore the ratio 
pl.ΓΝ,ΜΞ to pl.ΓΝ,Ξι is greater than the ratio  of the square on the sum of ΜΝ 
and ΜΞ to the square on the sum of Νι and Ξι. 
 And permutando the ratio pl.ΓΝ,ΜΞ to the square on the sum of ΝΜ and 
ΜΞ is greater than pl.ΓΝ,Ξι to the square on the sum of Νι and Ξι. 
 Bur as for the ratio pl.ΓΝ,ΜΞ to the square on the sum of ΝΜ and ΜΞ, it 
is equal to the ratio of sq.ΑΓ to the square on [the sum of] two sides of the ei-
dos corresponding to ΚΒ, as is proved in Theorem 17 of this Book, and as for 
the ratio pl.ΓΝ,Ξι to the square on the sum of Νι and Ξι, it is equal to the ratio 
of sq.ΑΓ to the square on the sum of two sides of the eidos corresponding to 
ΔΕ, as is also proved in Theorem 17 of this Book. Therefore the ratio of sq.ΑΓ 
to the square on the sum of two sides of the eidos corresponding to ΚΒ is 
greater than its ratio to the square on the sum of two sides of the eidos corre-
sponding to ΔΕ. 
 Therefore the sum of the sides bounding the eidos corresponding to ΚΒ is 
smaller than the sum of the sides of the eidos corresponding to ΔΕ. 
 Furthermore the square on the sum of Ξι and Νι is greater than the quad-
ruple [rectangular plane] under ΞΠ and the sum of Νι and ΞΠ. Therefore it will 
be proved thence, as we proved previously, that the sum of the straight lines 
bounding the eidos corresponding to ΔΕ is smaller than the sum of  the sides 
bounding the eidos corresponding to ΤΥ. 
 Furthermore the quadruple [rectangular plane] under ΑΞ and the sum of 
ΝΞ and ΞΑ is smaller the square on the sum of ΝΠ and ΠΞ. Therefore it will be 
proved thence also as we proved [previously] that the sum of the straight lines 
bounding the eidos corresponding to ΤΥ is smaller than the sum of the sides 
bounding the eidos corresponding to ΑΓ. 
 Furthermore we draw the diameters ΖΗ and ΦΧ making them farther from 
ΑΓ than is the diameter ΚΒ, and draw from Γ two straight lines ΓΨ and ΓϘ 
parallel to ΧΦ and ΗΖ [respectively], and drop from Ψ and Ϙ the perpendiculars 
ΨΩ and ϘΣ to the axis. Then the quadruple [rectangular plane] under ΜΞ and 
the sum of ΣΝ and ΜΞ is greater than the square on the sum ΜΝ and ΜΞ. 
Therefore when we make the sum of ΜΞ and the quadruple [rectangular plane] 
under ΣΜ and ΣΝ common [to both sides], it will be proved from that, as we 
proved previously, that the sum of the straight lines bounding the eidos corre-



330 

sponding to ΖΗ is greater than the sum of the straight lines bounding the eidos 
corresponding to ΒΚ. 
 Furthermore the quadruple [rectangular plane] under ΣΞ and the sum of 
ΩΣ and ΣΞ is greater than the square on the sum of ΣΝ and ΣΞ. Therefore it will 
be proved thence also that the sum of the straight lines bounding the eidos cor-
responding to ΦΧ is the greater than the sum of the sides bounding the eidos 
corresponding to ΖΗ. 
 

[Proposition] 41 
 

In every ellipse the sum of [four] sides bounding the eidos corresponding 
to its major axis is smaller than the sum of the sides bounding any eidos corre-
sponding to another of its diameter, and  the sum of the sides bounding [one 
of] the eidoi corresponding to those diameters closer to the major axis is 
smaller than the sum of the sides bounding an eidos corresponding to a diame-
ter farther from it, and the sum of the sides bounding the eidos corresponding 
to the minor axis is greater than the sum of the sides  bounding the eidoi corre-
sponding to other diameters 54. 
 [Proof]. Let the major of two axes of the ellipse be ΑΓ, and its minor axis 
be ΔΕ, and let there be other diameters ΒΚ and ΖΗ. 

Let ΓΛ and ΓΙ be parallel to these two diameters and let us drop two per-
pendiculars ΛΜ and ΙΟ to the [major] axis. Let the ratio ΓΝ to ΑΝ be equal to 
the ratio of ΑΓ to the latus rectum of the eidos corresponding to it, and likewise 
we make the ratio ΑΞ to ΞΓ [equal to that ratio]. 
 Then the ratio of sq.ΑΓ to the square of the straight line equal to the sum 
of the diameter ΑΓ and the latus rectum of the eidos corresponding to it is 
equal to the ratio sq.ΝΓ to sq.ΝΞ, and is equal to the ratio pl.ΝΓ,ΑΞ to sq.ΝΞ 
because pl.ΝΓ,ΑΞ  is equal to sq.ΝΓ. 
 And the ratio sq.ΑΓ to sq.ΕΔ is equal to the ratio ΝΓ to ΓΞ because it was 
proved in Theorem 15 of Book I that the ratio sq.ΑΓ to sq.ΔΕ is equal to the ra-
tio of ΑΓ to its latus rectum, and the ratio ΓΝ to ΓΞ is equal to the ratio  
pl.ΝΓΞ to sq.ΓΞ, and the ratio of sq.ΔΕ to square on the straight line equal to 
the sum of ΔΕ and the latus rectum of the eidos corresponding to it is equal to 
the ratio sq.ΓΞ to sq.ΝΞ also because of what was proved in Theorem 15 of 
Book I. Therefore the ratio of sq.ΑΓ to the square on the straight line equal to 
the sum of the diameter ΔΕ and the latus rectum of the eidos corresponding to 
it is equal to the ratio pl.ΝΓΞ to sq.ΝΞ. 
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 And it was shown that the ratio pl.ΝΓ,ΑΞ to sq.ΝΞ is equal to the ratio of 
sq.ΑΓ to the square on the straight line equal to the sum of ΑΓ and the latus 
rectum of the eidos corresponding to it. 
 Therefore the ratio of ΑΓ to the sum of ΑΓ and its latus rectum is greater 
than the ratio of ΑΓ to the sum of ΔΕ and its latus rectum. Therefore the sum 
of the sides bounding the eidos corresponding to ΑΓ is smaller than the sum of 
the sides of the eidos corresponding to ΔΕ. 
 And [also] the ratio of pl.ΝΓ,ΜΞ to sq.ΝΞ is equal to the ratio of sq.ΑΓ to 
the square on the straight line equal to the sum of the diameter ΚΒ and the 
latus rectum of the eidos corresponding to it, as is proved in Theorem 17 of 
this Book. 

Therefore the ratio of ΑΓ to the sum of ΑΓ and its latus rectum is greater 
than the ratio of ΑΓ to the sum of ΚΒ and its latus rectum. Therefore the sum 
of the sides bounding the eidos corresponding to ΑΓ is smaller than the 
sum of the sides of the eidos corresponding to ΚΒ. 
 Furthermore the ratio pl.ΝΓ,ΜΞ to sq.ΝΞ is equal to the ratio of sq.ΑΓ to 
the square on the straight line equal to the sum of the diameter ΚΒ and the 
latus rectum of the eidos corresponding to it, as is proved in Theorem 17 of 
this Book, and likewise also the ratio pl.ΝΓ,ΟΞ to sq.ΝΞ is equal to the ratio of 
sq.ΑΓ to the square on the straight line equal to the sum of the diameter ΖΗ 
and its latus rectum. 
 Therefore the ratio of ΑΓ to the sum of ΚΒ and its latus rectum is greater 
than the ratio of ΑΓ to the sum of ΖΗ and its latus rectum. Therefore the sum 
of the sides bounding the eidos corresponding to ΚΒ is smaller than the sum of 
the sides of the eidos corresponding to ΖΗ. 
 Furthermore the ratio pl.ΓΝ, ΞΟ to sq.ΝΞ is equal to the ratio of sq.ΑΓ to  
the square on the straight line equal to the sum of the diameter ΖΗ and the 
latus rectum of the eidos corresponding to it, as is proved in Theorem 17 of 
this Book. 
 And we have [already] proved that the ratio pl.ΝΓΞ to sq.ΝΞ is equal to 
the ratio of sq.ΑΓ to the square on  the sum of ΔΕ and its latus rectum. 
 Therefore the ratio to the sum of ΖΗ and its latus rectum is greater than 
the ratio of ΑΓ to the sum of ΔΕ and its latus rectum. 
 Therefore the sum of the sides bounding the eidos corresponding to ΖΗ is 
smaller than the sum of the sides of the eidos corresponding to ΔΕ. 
 

[Proposition] 42 
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 The smallest of the eidoi corresponding to the diameters of a hyperbola is 
the eidos corresponding to its axis,  and those eidoi corresponding  to the  
diameters closer to the axis  are smaller than  those eidoi corresponding to the 
diameters farther from it 55 . 
 Let there be the hyperbola whose axis ΑΓ and two of its diameters ΚΒ 
and ΤΥ. 
 Then I say that the eidos corresponding to ΑΓ is smaller than the eidoi 
corresponding to other diameters of the section, and that the eidos correspond-
ing to ΚΒ is smaller than the eidos corresponding to ΤΥ. 
 [Proof]. We draw the straight lines ΓΛ and ΓΔ parallel to the diameters ΚΒ 
and ΤΥ [respectively], and drop to the axis the perpendiculars ΔΕ and ΛΜ, and 
make the ratio ΓΝ to ΑΝ equal to the ratio of ΑΓ to the latus rectum of the ei-
dos corresponding to it. Then the ratio ΓΝ to ΑΝ is equal to the ratio of sq.ΑΓ 
to the eidos corresponding to ΑΓ. And the ratio ΓΝ to ΝΜ is equal to the ratio 
of sq.ΑΓ to the eidos corresponding to ΚΒ, as is proved in Theorem 18 of this 
Book. 
 And the ratio ΓΝ to ΑΝ is greater than the ratio ΓΝ to ΜΝ. 
 Therefore the ratio of sq.ΑΓ to the eidos corresponding to ΑΓ is greater 
than its ratio to the eidos corresponding to ΚΒ. 
 Therefore the eidos corresponding to ΑΓ is smaller than the eidos corre-
sponding to ΚΒ. 
 Furthermore the ratio ΓΝ to ΝΕ is equal to the ratio of sq.ΑΓ to the eidos 
corresponding to ΤΥ, as is proved in Theorem 18 of this Book. 
 And likewise also the ratio ΓΝ to ΜΝ is equal to the ratio of sq.ΑΓ to the 
eidos corresponding to ΚΒ. 
 And the ratio ΓΝ to ΝΜ is greater than the ratio ΓΝ to ΕΝ. Therefore the 
ratio of sq.ΑΓ to the eidos corresponding to ΚΒ is greater than its ratio to the 
eidos corresponding to ΤΥ. 
 

 [Proposition] 43 
 

 The smallest of the eidoi constructed to the diameters on an ellipse is the 
eidos corresponding to the major axis, and the greatest of them is the eidos 
corresponding to the minor axis, and those eidoi corresponding to the diameters 
closer to the major axis are smaller than those corresponding to the diameters 
farther from it 56 . 
 Let there be the ellipse whose major axis ΑΓ and minor axis ΔΕ, and with  
two other of its diameters ΚΒ and ΤΥ. 
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 Then, I say that the eidos corresponding to ΑΓ is smaller than the eidos 
corresponding to ΚΒ, and that the eidos corresponding to ΚΒ is smaller than the 
eidos corresponding to ΤΥ, and that the eidos corresponding to ΤΥ is smaller 
than the eidos corresponding to ΔΕ. 
 [Proof]. We draw ΓΛ and ΓΙ parallel to the diameters ΚΒ and ΤΥ [respec-
tively], and drop as perpendicular to the axis ΛΜ and ΙΟ. We make the ratio ΓΝ 
to ΝΑ equal to the ratio of ΑΓ to the latus rectum of the eidos corresponding to 
it. Then the ratio of sq.ΑΓ to the eidos corresponding to ΑΓ is equal to the ratio 
ΝΓ to ΝΑ. 
 But sq.ΑΓ to equal to the eidos corresponding to ΔΕ, as is proved in 
Theorem 15 of Book I. Therefore the eidos corresponding to ΑΓ is smaller than 
the eidos corresponding to ΔΕ. 
 Now the ratio ΓΝ to ΜΝ is equal to the ratio of sq.ΑΓ to the eidos corre-
sponding to ΚΒ. As is proved in Theorem 18 of this Book.  And likewise the ratio 
ΓΝ to ΝΟ is equal to the ratio of sq.ΑΓ to the eidos corresponding to ΤΥ. 
 And the ratio ΓΝ to ΧΝ is equal to the ratio of sq.ΑΓ to the eidos corre-
sponding to ΔΕ. But ΑΝ is smaller than ΝΜ, and ΝΜ is smaller than ΝΟ, and ΝΟ 
is smaller than ΝΓ. Therefore the eidos corresponding to ΑΓ is smaller than the 
eidos corresponding to ΚΒ, and the eidos constructed on ΚΒ is smaller than the 
eidos corresponding to ΤΥ, and the eidos corresponding to ΤΥ is smaller than 
the eidos corresponding to ΔΕ. 
 

[Proposition] 44 
 

 If there is a hyperbola, and the transverse side of the eidos corresponding 
to its axis is either [1] not smaller than its latus rectum, or [2] smaller than it, 
but [such that] its square is not smaller than the half of the square of the dif-
ference between it [the transverse side] and it [the latus rectum],  then the 
sum of the squares of two sides of the eidos corresponding to the axis is 
smaller than [the sum of] the squares of two sides of any eidos corresponding 
to one of its other diameter 57. 
 Let ther be the hyperbola whose axis is ΑΓ, and with two of its diameters 
ΚΒ and ΤΥ. Let ΑΓ be either not smaller than the latus rectum of the eidos cor-
responding to it, or let ΑΓ be smaller than it, but let sq.ΑΓ be not smaller than 
the half of the square of the difference between it [ΑΓ] and it [its latus rec-
tum]. 
 Then I say that the sum of the squares of two sides of the eidos corre-
sponding to ΑΓ is smaller than [the sum of] the squares of two sides 
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of the eidos corresponding to ΚΒ, and that [the sum of] the squares of two 
sides of the eidos corresponding to ΚΒ is smaller that [the sum of] the squares 
of two sides of the eidos corresponding to ΤΥ. 
 [Proof]. First we make ΑΓ not smaller than the latus rectum of the eidos 
corresponding to it. Then the latus rectum of the eidos corresponding to ΚΒ is 
greater than the latus rectum of the eidos corresponding to ΑΓ, as is proved in 
Theorem 33 of this Book. And likewise the latus rectum of the eidos corre-
sponding to ΤΥ is greater than the latus rectum of the eidos corresponding to 
ΚΒ. And ΑΓ is smaller than ΚΒ, and ΚΒ is smaller than ΤΥ. Therefore [the sum 
of] the squares on two sides of the eidos corresponding ΑΓ is smaller than [the 
sum of] the squares on  two sides of the eidos corresponding to ΚΒ, and [the 
sum of] the squares on two sides of the eidos corresponding to ΚΒ is smaller 
than [the sum of] the squares on two sides of the eidos corresponding to ΤΥ. 
 

[Proposition] 45 
 

 Furthermore we make ΑΓ smaller than the latus rectum of the eidos cor-
responding to it, but [such that] its square is not smaller than the half  of the 
square on the difference between it [ΑΓ] and it [its latus rectum] and set the 
diagram as it was in the preceding theorem, and let each of two ratios ΓΝ to ΑΝ 
and ΑΞ to ΓΞ be equal to the ratio of ΑΓ to the latus rectum of the eidos corre-
sponding to it, then the double sq.ΑΞ is not smaller than sq.ΝΞ because ΑΞ is 
equal to ΓΝ, and the ratio of ΑΓ to its latus rectum is equal to the ratio ΑΞ to 
ΞΓ,  and sq.ΑΓ is not smaller than the half of the square on the difference be-
tween its latus rectum. We draw two diameters ΚΒ and ΤΥ, and draw ΓΔ and ΓΛ 
parallel to them, and drop to the axis the perpendiculars ΔΕ and ΛΜ 58. 
 Then the ratio of ΑΓ to the latus rectum of the eidos corresponding to it 
is equal to the ratio ΓΝ to ΑΝ and is equal to the ratio ΑΞ to ΞΓ. And the double 
sq.ΑΞ is not smaller than sq.ΞΝ, and [hence] the double pl.ΜΞΑ is greater than 
sq.ΞΝ . Therefore we make the double pl.ΝΑΞ common [to both sides].  There-
fore the double pl.ΑΞ sum of the double pl ΝΑΞ and sq.ΝΞ is greater than the 
sum of the double pl.ΝΑΞ  and sq.ΝΞ.  Therefore the double pl.ΑΞ and the sum 
of ΝΜ and ΑΞ is greater than the sum of sq.ΝΑ and sq.ΑΞ is greater than the 
sum of sq ΝΑ and sq ΑΞ Therefore the double [rectangular plane] under ΑΞ and 
the sum ΝΜ and ΑΞ is greater than the sum of the double pl.ΝΑΞ and sq.ΝΞ. 
Therefore the double [rectangular plane] under ΑΞ and the sum of ΝΜ and ΑΞ is 
greater than the sum of sq.ΝΑ and sq.ΑΞ. 
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 Therefore the ratio the double [rectangular plane] under ΑΜ and the sum 
of ΝΜ and ΑΞ to the double [rectangular plane] under ΑΞ and the sum of ΝΜ 
and ΑΞ is smaller than the ratio the double [rectangular plane] under ΑΜ and 
the sum of ΝΜ and ΑΞ to the sum of sq.ΑΝ and sq.ΑΞ. But the ratio the double 
[rectangular plane] under ΑΜ and the sum ΝΜ and ΑΞ to the double [rectangu-
lar plane] under ΑΞ and the sum of ΜΝ and ΑΞ is equal to the ratio ΑΜ to ΑΞ. 
Therefore the ratio ΑΜ to ΑΞ is smaller than the ratio the double [rectangular 
plane] under ΑΞ and the sum of ΝΜ and ΑΞ to the sum of sq.ΑΝ and sq.ΑΞ. 
[And componendo the ratio ΜΞ to ΞΑ is smaller than the ratio the sum of the 
double [the rectangular plane] under ΑΜ and the sum of (ΝΜ and ΑΞ) and 
sq.ΝΑ and sq.ΑΞ  to the sum of sq.ΝΑ and sq.ΑΞ]59 
 And the sum of sq.ΝΜ and sq.ΜΞ is smaller than the sum of sq.ΝΑ, sq.ΑΞ, 
and the double [rectangular plane] under ΑΜ and the sum of ΝΜ and ΑΞ. There-
fore the ratio ΜΞ to ΑΞ is smaller than the ratio the sum of sq.ΝΜ and sq.ΜΞ to 
sum of sq.ΑΝ and sq.ΑΞ. 
 But the ratio ΜΞ to ΑΞ is equal to the ratio pl.ΓΝ,ΜΞ to pl.ΓΝ,ΑΞ. There-
fore the ratio pl.ΓΝ,ΜΞ to pl.ΓΝ,ΑΞ is smaller than the ratio the sum of sq.ΝΜ 
and sq.ΜΞ  to the sum of sq.ΑΝ and sq.ΑΞ. And permutando the ratio pl.ΓΝ,ΜΞ 
to the sum of sq.ΜΝ and sq.ΜΞ is smaller than pl.ΓΝ,ΑΞ to the sum of sq.ΑΝ 
and sq.ΑΞ. 
 But the ratio pl.ΓΝ,ΜΞ to thee sum of sq.ΝΜ and sq.ΜΞ is equal to the 
ratio of sq.ΑΓ to [the sum of] the squares on two sides of the eidos 
corresponding to ΚΒ, as is proved in Theorem 19 of this Book. And the ratio 
pl.ΓΝ,ΑΞ to the sum of sq.ΑΝ and sq.ΑΞ is equal to the ratio of sq.ΑΓ to the 
[sum of the] squares on two sides of the eidos corresponding to ΑΓ, as is 
proved from the preceding  topic in this theorem. Therefore the ratio of sq.ΑΓ 
to [the sum of] the squares on two sides of the eidos constructed on ΚΒ is 
smaller than its ratio to [the sum of] the squares on two sides of the eidos cor-
responding to ΑΓ. Therefore [the sum of] the squares on two sides of the eidos 
corresponding to ΚΒ is greater than [thee sum of] the squares on two sides of 
the eidos corresponding to ΑΓ. 
 Furthermore the double sq.ΜΞ is greater than sq.ΝΞ, and [hence] the 
double pl.ΕΞΜ is greater than sq.ΝΞ. Therefore it will be proved, as we proved in 
the preceding, that [the sum of] the squares on two sides of the eidos corre-
sponding to ΤΥ is greater than [the sum of] the squares on two sides of the ei-
dos corresponding to ΚΒ. 
 

[Proposition] 46 
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 But if  the square on the transverse diameter [ΑΓ] is less than the half of 
the square on the difference between it and the latus rectum  of the eidos 
corresponding to it, then on either side of the axis are two diameters, the 
square on each of which is equal to the half of the square on the difference be-
tween it and the latus rectum of the eidos corresponding to it, and the sum of 
the squares of two sides of the eidos corresponding to it is smaller than [the 
sum of] the squares of two sides of any eidos corresponding to [one of] the di-
ameters drawn on the side [of the axis] on which it lies, and [the sum of] the 
squares of two sides of those eidoi corresponding to the diameters on its side 
[of the axis] closer to it is smaller than [the sum of] the squares  of two sides 
[of eidoi] corresponding to those diameters farter from it 60. 
 Let the axis of the section be ΑΓ, and let sq.ΑΓ be smaller than the half of 
the square on the difference between it and the latus rectum of the eidos cor-
responding to it. Let each of the ratios ΓΝ to ΑΝ and ΑΞ to ΞΓ be equal to the 
ratio of ΑΓ to the latus rectum of the eidos corresponding to it. Then the dou-
ble sq.ΑΞ is smaller than sq.ΝΞ. We make the double sq.ΜΞ equal to sq.ΝΞ,  and  
drop  from Μ the perpendicular ΜΛ to the axis, and join ΛΓ and draw the diame-
ter ΚΒ parallel to ΓΛ. Then the ratio ΜΞ to ΜΝ is equal to the ratio of ΚΒ to the 
latus rectum of the eidos constructed on it, as is proved in Theorem 6 of this 
Book. And hence sq.ΚΒ is equal to the half of the square on the difference be-
tween it  the latus rectum of the eidos corresponding to it. 
 So we draw between Α and Β two diameters ΔΕ and ΤΥ, and draw ΓΡ and 
ΓΟ parallel to them [respectively], drop the perpendiculars Ρι and ΟΠ to the 
axis. 
 Now the double sq.ΜΞ is equal to sq. ΞΝ. Therefore the double pl. ΜΞι is 
smaller than sq.ΝΞ. We make the double pl.ΝιΞ common [to both sides]. Then 
the double [rectangular plane] under ιΞ and the sum of ΜΝ and ιΞ is smaller 
than the sum of sq.Νι and sq.ιΞ.  
 Thence it will be proved, as we proved in the preceding theorem  that 
[the sum of] the squares on two sides of the eidos corresponding to ΚΒ is less 
than [the sum of] the squares on two sides of the eidos corresponding to ΔΕ. 
 Furthermore the double pl.ιΞΠ is smaller than sq.ΞΝ. Therefore we make 
the double pl.ΝΠΞ common [to both sides]. Then the double [rectangular plane] 
under ΞΠ and the sum of ιΝ and ΞΠ than the sum of sq.ΝΠ and sq.ΠΞ,  and it 
will be proved thence also, as it was proved in the preceding theorem that [the 
sum of] the squares on two sides of the eidos constructed on ΔΕ is smaller than 
[the sum of] the squares on two sides of the eidos corresponding to ΤΥ. 



337 

 Furthermore the double pl.ΠΞι is smaller than sq.ΝΞ, and it will proved 
thence also, as we proved previously, that [the sum of] the squares on two 
sides of the eidos corresponding to ΤΥ is smaller than [the sum of] the squares 
on two sides of the eidos corresponding to ΑΓ. 
 Furthermore we draw two diameters ΖΗ and ΦΧ, and let them be farther 
from the axis than is the diameter ΚΒ, and we draw ΓΨ and ΓΙ parallel to them, 
and drop to the axis to the perpendiculars ΨϘ and ΣΙ, then the double pl.ΣΞΜ is 
greater than sq.ΝΞ, therefore it will be proved thence also, as we proved previ-
ously, that [the sum of] the squares on two sides of the eidos corresponding to 
ΖΗ is greater than [the sum of] the squares on two sides of the eidos corre-
sponding to ΚΒ. 
 Furthermore the double pl. ϘΞΣ is greater than sq.ΝΞ, therefore it will be 
proved thence, as we proved previously, that [the sum of] the squares on two 
sides of the eidos corresponding to ΦΧ is greater than [the sum of] the squares 
on two sides of the eidos corresponding to ΖΗ. 
 

[Proposition] 47 
 

 If there is an ellipse, and the square on the transverse side of the eidos 
corresponding to its major axis is not greater than the half of the square on the 
sum of two sides of the eidos corresponding to it, then [the sum of] the 
squares on two sides of the eidos corresponding to the major axis is smaller 
than [the sum of] the squares on two sides of [all] other eidoi corresponding to 
its diameters, and [the sum of] the squares and two sides of those eidoi corre-
sponding to diameters closer to it is smaller than [the sum of] the squares on 
two sides of those eidoi corresponding to the diameters farther from it, and the 
greatest of them is [the sum of] the squares on two sides of the eidos corre-
sponding to the minor axis 61. 
 Let there be the ellipse whose major axis ΑΓ and minor axis ΔΕ. Let sq.ΑΓ 
not be greater than the half of the square on [the sum of] two sides of the ei-
dos corresponding to it, and let there be in the section two other diameters KB 
and ΤΥ. We draw ΓΛ and ΓΙ parallel to them [respectively], and drop to the axis 
the perpendiculars ΛΜ and ΙΟ, and make each of the ratios ΓΝ to ΑΝ and ΑΞ to 
ΞΓ equal to the ratio of ΑΓ to the latus rectum of the eidos corresponding to it. 
Then the ratio pl.ΝΓ,ΑΞ to the sum of sq.ΝΓ and sq.ΓΞ is equal to the ratio of 
sq.ΑΓ to [the sum of] the squares on two sides of the eidos corresponding to 
ΑΓ. And the ratio of the latus rectum of the eidos corresponding to ΔΕ to ΔΕ is 
equal to the ratio ΝΓ to ΓΞ because the ratio ΝΓ to ΓΞ is equal to the ratio of 
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ΑΓ to its latus rectum, and the ratio of ΑΓ to its latus rectum is equal to the ra-
tio of the latus rectum of the diameter ΔΕ to ΔΕ because of what is proved in 
Theorem 15 of Book I. 
 Similarly too the ratio of the latus rectum of the eidos corresponding to 
ΔΕ to ΔΕ is equal to the ratio of the square on the latus rectum of the eidos 
corresponding to ΔΕ to sq.ΑΓ. And the ratio ΝΓ to ΓΞ is equal to the ratio 
pl.ΝΓΞ to sq.ΓΞ. Therefore the ratio of the latus rectum of the eidos corre-
sponding to ΔΕ to ΔΕ is equal to the ratio pl.ΝΓΞ to sq.ΓΞ, and is equal to the 
ratio of the square on the latus rectum of the eidos corresponding to ΔΕ to 
sq.ΑΓ. [And the ratio of the square on the latus rectum of the eidos corre-
sponding to ΔΕ to sq.ΑΓ is equal to the ratio sq.ΑΓ to sq.ΔΕ]. 
 And the ratio of sq.ΔΕ to [the sum of] the squares on two sides of the 
eidos corresponding to ΔΕ is equal to the ratio sq.ΓΞ to the sum of sq.ΝΓ and 
sq.ΓΞ. Therefore the ratio pl.ΝΓΞ to the sum of sq.ΝΓ and sq.ΓΞ is equal to the 
ratio of sq.ΑΓ to [the sum of] the squares on two sides of the eidos corre-
sponding to ΔΕ. 
  And the ratio pl.ΝΓ,ΑΞ to sq.ΝΞ is equal to the ratio of sq.ΑΓ [to the 
sum of] the squares on two sides of the eidos corresponding to it. 
 [Therefore the ratio sq.ΑΓ to the sum of  the squares on two sides of the 
eidos corresponding to ΑΓ is greater than  the ratio sq.ΑΓ to the sum of the 
squares on two sides of the eidos corresponding to ΔΕ. Therefore the sum of 
the  squares on two sides of the eidos corresponding to ΑΓ is smaller than the 
sum of the squares on two sides of the eidos corresponding to ΔΕ]62. 
 Now sq.ΑΓ is not greater than the half of the square on [the sum of] two 
sides of the eidos corresponding to ΑΓ. Therefore the double pl.ΝΓ,ΑΞ is not 
greater  than sq.ΝΞ , and [hence] the double pl.ΝΓ,ΜΞ is smaller than sq.ΝΞ. 
Therefore we subtract the double pl.ΝΜΞ from both [sides] alike, and there re-
mains the double pl.ΓΜΞ is smaller than the sum of sq.ΝΜ and sq.ΜΞ.  There-
fore the ratio the double pl.ΑΜΓ to the double pl.ΞΜΓ is greater than the ratio 
double pl.ΑΜΓ to the sum of sq.ΝΜ and sq.ΜΞ. Therefore the ratio ΑΜ to ΜΞ is 
greater than the ratio the double pl.ΑΜΓ to the sum of sq.ΜΝ and sq.ΜΞ. 
 But the sum of the double pl.ΑΜΓ, sq.ΝΜ, and sq.ΜΞ is equal to the sum 
of sq.ΝΓ and sq.ΓΞ because ΑΝ is equal to ΓΞ. Therefore componendo the ratio 
ΑΞ to ΜΞ is greater than  the ratio of the sum of sq.ΝΓ and sq.ΓΞ to the sum of 
sq.ΝΜ and sq.ΜΞ. But the ratio ΑΞ to ΜΞ is equal to the ratio pl.ΝΓ,ΑΞ to  
pl.ΝΓ,ΜΞ. Therefore the ratio pl.ΝΓ,ΑΞ to pl.ΝΓ,ΜΞ is greater than the ratio the 
sum of sq.ΝΓ and sq.ΓΞ to the sum of sq.ΝΜ and sq.ΜΞ. 
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 And permutando the ratio pl.ΝΓ,ΑΞ to the sum of sq.ΝΓ and sq.ΓΞ is 
greater than the ratio pl.ΝΓ,ΜΞ to the sum of sq.ΝΜ and sq.ΜΞ. 
 But as for the ratio pl.ΝΓ,ΑΞ to the sum of sq.ΝΓ and sq.ΓΞ, we have 
proved that it is equal to the ratio of sq.ΑΓ to [the sum of] the square on two 
sides of the eidos corresponding to it, and as for the ratio pl.NG,MX to the sum 
of sq.ΝΜ and sq.ΜΞ it is equal to the ratio of sq.ΑΓ to [the sum of] the squares 
on two sides of the eidos corresponding to ΚΒ, as is proved in Theorem 19 of 
this Book. Therefore the ratio  of sq.ΑΓ to [the sum of] the squares on two 
sides of the eidos corresponding to it is greater than its ratio to [the sum of] 
the squares on two sides of the eidos corresponding to ΚΒ. Therefore [the sum 
of] the squares on two sides of the eidos corresponding to ΑΓ is smaller than 
[the sum of] the squares on two sides of the eidos corresponding to ΚΒ. 
 Furthermore ΜΝ is either smaller than ΟΞ or it is not  smaller than it. 
 Therefore first let it be smaller than it. Then the sum of sq.ΝΜ and sq.ΜΞ 
is greater than the sum sq.ΝΟ and sq.ΟΞ. But the sum of sq.ΟΞ is greater than 
the double [rectangular plane] under ΟΞ and the difference between ΟΞ and 
ΜΝ. Therefore the ratio  the double [rectangular plane] under ΜΟ and the dif-
ference between ΟΞ and ΜΝ to the double [rectangular plane] under ΟΞ and the 
difference between ΟΞ and ΜΝ is greater than the ratio the double [rectangular 
plane] under ΜΟ and the difference between ΟΞ and ΜΝ to the sum of sq.ΟΞ 
and sq.ΟΝ. Therefore the ratio ΜΟ to ΟΞ is greater than the ratio the double 
 [rectangular plane] under ΜΟ and the difference between ΟΞ and ΜΝ to the 
sum of sq.ΟΝ and sq.ΟΞ. But the sum of the double [rectangular plane] under 
ΜΟ and the difference between ΟΞ and ΜΝ, sq.ΟΝ, and sq.ΟΞ is equal to sq.ΜΝ 
and sq.ΜΞ because the difference between (the sum of sq.ΜΞ and sq.ΜΝ) and  
(the sum sq.ΝΟ and sq.ΟΞ) is equal to the difference between the double sq.ΜΘ 
and sq.ΘΟ. Therefore componendo the ratio ΜΞ to ΞΟ is greater than the ratio 
the sum of sq.ΜΝ and sq.ΜΞ to the sum of sq.ΟΝ and sq.ΟΞ.  But the ratio ΜΞ 
to ΞΟ is equal to the ratio pl.ΝΓ,ΜΞ to pl.ΝΓ,ΞΟ.  Therefore the ratio pl.ΝΓ,ΜΞ 
to pl.ΝΓ,ΟΞ is greater than the ratio the sum of sq.ΜΝ and sq.ΜΞ to the sum of 
sq.ΟΝ and sq.ΟΞ. 
 And permutando the ratio pl.ΝΓ,ΜΞ to the sum ΜΝ and sq.ΜΞ is greater 
than pl.ΝΓ,ΞΟ to the sum of sq.ΟΝ and sq.ΟΞ. 
 But as for the ratio pl.ΝΓ,ΜΞ to the sum of sq.ΜΝ and sq.ΜΞ, it is equal 
to the ratio of sq.ΑΓ to [the sum of] the squares on two sides of the eidos cor-
responding to ΚΒ, as is proved in Theorem 19 of this Book, and as for the ratio 
pl.ΝΓ,ΞΟ to the sum of sq.ΟΝ and sq.ΞΟ, it is equal to the ratio of sq.ΑΓ to 
[the sum of] the squares on two sides of the eidos corresponding to ΤΥ.  
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 Furthermore we make ΜΝ not smaller than ΞΟ, then the sum sq.ΜΝ and 
sq.ΜΞ is notgreater the sum of sq.ΝΟ and sq.ΟΞ. Therefore the ratio pl.ΝΓ.ΜΞ 
to the sum of sq.ΝΜ and sq.ΜΞ is greater than the ratio pl.ΝΓ,ΞΟ to the sum of 
sq.ΝΟ and sq.ΟΞ. Therefore it will be proved thence also, as we proved in the 
preceding part of this theorem, that [the sum of] the squares on two sides of 
the eidos corresponding to ΚΒ is smaller than [the sum of] the squares on two 
sides of the eidos corresponding to ΤΥ. 
 Similarly too what we stated will be proved if the perpendicular drawn 
from Ι falls between Μ and Θ or on Θ itself for in every case ΝΜ turns out to be 
smaller than the distance which the perpendicular [ΙΟ] cuts off from it [the ma-
jor axis towards Ν and Α]. 
 Now the ratio pl.ΝΓΞ to the sum of sq.ΝΓ and sq.ΓΞ is equal to the ratio 
of sq.ΑΓ to [the sum of] the squares on two sides of the eidos corresponding 
to ΔΕ, as we proved in the first part of this theorem, and the ratio pl.ΝΓ,ΟΞ to 
the sum of sq.ΝΟ and sq.ΟΞ is equal to the ratio of sq.ΑΓ to [the sum of] the 
squares on two sides of the eidos corresponding to ΤΥ, as is proved in Theorem 
19 of this Book. Therefore it will be proved thence, as we proved above, that 
[the sum of] the squares on two sides of the eidos corresponding to ΤΥ is 
smaller than [the sum of] the squares on two sides of the eidos corresponding 
to ΔΕ.  
 

[Proposition] 48 
 

 If there is an ellipse, and the square on its major axis is greater than the 
half of the square on the sum of two sides of the eidos corresponding to it, 
then there are two diameters [one] on  either side of the axis, such that the 
square on each of them is equal to the half of the square on the sum of two 
sides of the eidos corresponding to it, and [the sum of] the square on two sides 
of the eidos corresponding to it is smaller thin [the sum of] the squares on two 
sides of [any of] other eidoi corresponding to diameters drawn in that quadrant 
in which [that diameter] is, and [the sum of] the squares on two sides of eidoi 
corresponding to those diameters in that quadrant closer to it is  smaller than 
[the sum of] the squares on two sides of eidoi corresponding  to those diame-
ters farther [from it] 63. 
 Let the diagram be as we drew it in the theorem preceding this one. 
 Then it will be proved, as it was proved there, that the double sq.ΑΞ is 
greater than sq.ΝΞ. We make the double sq.ΜΞ equal to sq.ΝΞ,  and drop from 
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Μ the perpendicular ΜΛ to the axis to meet the section, and join ΓΛ, and draw 
in the section the diameter ΚΒ parallel to ΓΛ. 
 Then  the ratio ΜΞ to ΞΝ is equal to the ratio of ΚΒ to [the sum of] two 
sides of the eidos corresponding to it, as is drawn from the proof of Theorem 7 
of this Book. And therefore the ratio sq.ΜΞ to sq.ΞΝ is equal to the ratio of 
sq.ΚΒ to the square on the sum of two sides of the eidos corresponding to it. 
But sq.ΜΞ is equal to the half of sq.ΞΝ .Therefore sq.ΚΒ is equal to the half of 
the square on [the sum of] two sides of the sides of the eidos corresponding to 
it. 
 Therefore we draw two diameters ΔΕ and ΤΥ between Α and Β, and draw 
from Γ two straight lines ΓΟ and Γς  [respectively] parallel to them, and drop to 
the axis the perpendiculars Οι and ςΠ . 
 Now sq.ΜΞ is equal to the half sq.ΞΝ, and pl.ΝΞΘ also is equal to the half 
of sq.ΝΞ. Therefore pl.ΝΞΘ is equal to sq.ΜΞ. Therefore pl.ΝΞΜ  is equal to 
pl.ΜΞΘ. And when we subtract two smaller [members] from two greater [mem-
bers] , we get the ratio of the remainder ΝΜ to the remainder ΜΘ equal to the 
ratio of the whole ΝΞ to the whole ΜΞ. Therefore pl.ΝΞ,ΜΘ  is equal to pl.ΝΜΞ. 
Therefore pl.ΝΞ,ΜΘ  is greater than pl.Νι,ΜΞ ,and the double pl.ΝΞ,ΜΘ is 
greater than the double pl.Νι,ΜΞ. Therefore the quadruple pl.ΜΘΞ is greater 
than the double pl.Νι,ΜΞ . 
 We make the double pl.ιΜΞ common [to both sides], then the sum of the 
quadruple pl.ΞΘΜ and the double pl.ιΜΞ is greater than the double pl.ΙΜΞ. 
 Furthermore we make the quadruple sq.ΜΘ common [to both sides], then 
the sum of the quadruple pl.ΞΘΜ , the double pl.ιΜΞ, and the quadruple sq.ΜΘ  
is greater than the sum of the double pl.ΝΜΞ and the quadruple sq.ΜΘ. 
 But the sum of the quadruple ΞΘΜ, the double pl.ιΜΞ, and the quadruple 
sq.ΜΘ is equal to the double [rectangular plane] under ΜΞ and the sum of Θι 
and ΘΜ, and  the sum of the double pl.ΝΜΞ and the quadruple sq.ΜΘ is equal to 
the sum of sq.ΜΝ and sq.ΜΞ. Therefore the double [rectangular plane] under 
ΜΞ and the sum of Θι and ΘΜ is greater than the sum of sq.ΝΜ and sq.ΜΞ. And  
therefore the ratio the double [rectangular plane] under Mi and the sum of Θι 
and ΘΜ to the double [rectangular plane] under ΜΞ and the sum of Θι and ΘΜ 
is smaller than the double [rectangular plane] under Μι and the sum of Θι and 
ΘΜ to the sum of sq.ΝΜ and sq.ΜΞ. Therefore the ratio Μι to ΜΞ is smaller 
than the double [rectangular plane] under Μι and the sum of Θι and ΘΜ to the 
sum of sq.ΝΜ and sq.ΜΞ. 
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 But the sum of sq.Νι and sq.Ξι is greater than the sum of sq.ΝΜ and 
sq.ΜΞ by an amount equal to the double the [rectangular plane] under Μι and 
the sum of Θι and ΘΜ. 
 Therefore componendo the ratio ιΞ to ΜΞ is smaller than the ratio the 
sum of sq.Νι and sq.Ξι to the sum of sq.ΝΜ and sq.ΜΞ. Then it will be proved 
thence, as it was proved in the preceding theorem, that [the sum of] the 
squares on two sides of the eidos corresponding to ΒΚ is smaller than [the sum 
of] the squares on two sides of the eidos corresponding to ΔΕ. 
 Furthermore the double pl.ΝΞ,ιΘ  is greater than the double pl.ΝΠ,ιΞ, 
therefore it will be proved thence, as we proved in  the preceding part of this 
theorem, that the sum of the squares on two sides of the eidos corresponding 
to ΔΕ is smaller than the sum of the squares on two sides of the eidos corre-
sponding to ΤΥ. 
 Furthermore the double pl.ΝΞ,ΠΘ is greater than the double pl.ΝΑΞ, 
therefore it will be proved thence that the ratio ΑΞ to ΞΠ is smaller than the ra-
tio the sum of sq.ΝΑ and sq.ΑΞ to the sum of sq.ΝΠ and sq.ΠΞ. 
 But the ratio ΑΗ to ΞΠ is equal to the ratio pl.ΝΓ,ΑΞ to pl.ΝΓ,ΞΠ. There-
fore the ratio pl.ΝΓ,ΑΞ to pl.ΝΓ,ΞΠ is smaller than the ratio the sum of 
sq.ΝΑ and sq.ΑΞ to the sum of sq.ΝΠ and sq.ΠΞ. Therefore it will be proved 
thence, as we proved previously,  that [the sum of] the squares on two sides of 
the eidos corresponding to ΤΥ is smaller than [the sum of] the squares on two 
sides of the eidos corresponding to ΑΓ. 
 Furthermore we draw in the section in those two quadrants [in which the 
diameters are already drawn] two other diameters ΖΗ and ΦΧ farther from the 
major axis than is the diameter ΚΒ, and draw from Γ two straight lines ΓΨ and 
ΓΡ parallel to them, and drop to the axis two perpendiculars ΨΩ and ΡΣ, it will be 
proved by means of a procedure like the preceding, that [the sum of] the 
squares on two sides of the eidos corresponding to ΚΒ is smaller than [the sum 
of] the squares on two sides of the eidos corresponding to ΖΗ, and that [the 
sum of] these [latter] two squares is smaller than [the sum of] the squares on 
two sides of the eidos corresponding to ΦΧ, whether Σ and Ω are both between 
Μ and Θ, or  whether one of them is on the center Θ and the other between Μ 
and Θ or between Θ and Γ.  
 Hence [the sum of] the squares on two sides of the eidos corresponding 
to ΚΒ equal in square to the half of the square on [the sum of] two sides of the 
eidos corresponding to it is smaller than [the sum of] the squares on two sides  
of any of the eidoi corresponding to other diameters drawn in the two quad-
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rants ΑϘ and Γ�, and [the sum of] the squares on two sides of those eidoi cor-
responding to the diameters drawn in two quadrants ΑϘ and Γ�  closer to it 
[ΚΒ] is smaller than [the sum of] the squares on two sides of those eidoi corre-
sponding to the diameters farther [from it]. 
 Therefore [the sum of] the squares on two sides of the eidos correspond-
ing to Ϙ� turns out to be greater than the sum of the squares on two sides of 
the eidoi corresponding to any of the remaining diameters. 
 

 [Proposition] 49 
 

 If there is a hyperbola, and the transverse side of the eidos corresponding 
to its axis is greater than its  latus rectum, then the difference between the 
squares on two sides of that eidos is smaller than the difference between the 
squares on two sides of any of the eidoi corresponding to other diameters, and 
the difference between the squares on two sides of those eidoi corresponding 
to diameters closer [to the axis] is smaller than the difference between the 
squares on two sides of those eidoi corresponding to diameters farther from it, 
and the difference between the squares on two sides of any of the eidoi corre-
sponding to diameters which are not  axes  is greater than the difference be-
tween the square on the axis and the eidos64 corresponding to it, but smaller 
than double that difference. 
 Let there be the hyperbola whose axis ΑΓ and center Θ, and let ΑΓ be 
greater than the latus rectum of the eidos corresponding to it. 
 And let each of the ratios ΓΝ to ΝΑ and ΑΞ to ΓΞ be equal to the ratio of 
ΑΓ to the latus rectum of the eidos corresponding to it. We draw two diameters 
ΚΒ and ΤΥ. 
 Then I say that the difference between sq.ΑΓ and the square on its latus 
rectum is smaller than the difference between sq.ΚΒ and the square on the 
latus rectum of the eidos corresponding to ΚΒ, and that the difference between 
sq.ΚΒ and the square on its latus rectum is smaller than the difference between 
sq.ΤΥ and the square on its latus rectum. 
 [Proof]. We draw ΓΛ and ΓΔ parallel to the diameters ΚΒ and ΤΥ [respec-
tively], and drop to the axis the perpendiculars ΔΕ and ΛΜ. Then the ratio of ΑΓ 
to its latus rectum is equal to the ratio ΒΝ to ΑΝ and also is equal to the ratio 
ΑΞ to ΞΓ. Therefore the ratio pl.ΝΓ,ΑΞ  to the difference between sq.ΑΞ and 
sq.ΑΝ is equal to the ratio of sq.ΑΓ to the difference between it [sq.ΑΓ] and the 
square on its latus rectum. 



344 

 Now the ratio ΜΞ to ΑΞ is smaller than the ratio ΜΝ to ΝΑ. Therefore the 
ratio ΜΞ to ΑΞ is smaller than the ratio the sum of ΜΞ and ΜΝ to the sum of 
ΑΞ and ΑΝ which is smaller than the ratio [the rectangular plane] under ΞΝ and 
the sum of ΞΜ and ΜΝ to [the rectangular plane] under ΞΝ and the sum of ΑΞ 
and ΑΝ. But the ratio ΜΞ to ΑΞ is equal to the ratio pl.ΓΝ,ΜΞ to pl.ΓΝ,ΑΞ. 
 Therefore the ratio pl.ΓΝ,ΜΞ to pl.ΓΝ,ΑΞ is  smaller than [the rectangular 
plane] under ΞΝ and the sum of ΜΞ and ΜΝ to [the rectangular plane] under ΞΝ 
and the sum of ΑΞ and ΑΝ. 
 Now as for [the rectangular plane] under ΞΝ and the sum ΜΞ and ΜΝ, it 
is equal to the difference between sq.ΜΞ and sq.ΜΝ, and as for [the rectangular 
plane] under ΞΝ and the sum ΑΞ and ΑΝ, it is equal to the difference between 
sq.ΑΞ and sq.ΑΝ. Therefore the ratio pl.ΓΝ,ΜΞ to pl.ΓΝ,ΑΞ is smaller than the 
ratio the difference between sq.ΜΞ and sq.ΜΝ to the difference between sq.ΑΞ 
and sq.ΑΝ 
 And permutando the ratio pl.ΓΝ,ΜΞ to the difference between sq.ΜΞ and 
sq.ΜΝ is smaller than pl.ΓΝ,ΑΞ to the difference between sq.ΑΞ and sq.ΑΝ. 
But as for the ratio pl.ΓΝ,ΜΞ to the difference between sq.ΜΞ and sq.ΜΝ, it is 
equal to the ratio of sq.ΑΓ to the difference between the squares on two sides 
of the eidos corresponding to ΚΒ, as is proved in Theorem 20 of this Book, and 
as for the ratio pl.ΓΝ,ΑΞ to the difference between sq.ΑΞ and sq.ΑΝ,  we have 
shown that it is equal to the ratio of sq.ΑΓ to the difference between the 
square on it [ΑΓ] and the square on the latus rectum of the eidos corresponding 
to it. Therefore the ratio of sq.ΑΓ to the difference between the squares on two 
sides of the eidos corresponding  to ΚΒ is smaller than its ratio to the difference 
between the squares on two sides of the eidos corresponding to ΑΓ. Therefore, 
the difference between the squares on two sides of the eidos corresponding to 
ΚΒ is greater than the difference between the squares on two sides of the eidos 
corresponding to ΑΓ. 
 Furthermore, the ratio ΕΞ to ΜΞ is smaller than ΕΝ to ΜΝ; therefore the 
ratio ΕΞ to ΜΞ is smaller than the ratio of the sum of ΕΞ and ΕΝ to the sum of 
ΜΞ and ΜΝ. Therefore it will be proved thence, as we proved above, that the 
difference between the squares on two sides of the eidos corresponding to ΤΥ 
is greater than the difference between the squares on two sides of the eidos 
corresponding to ΚΒ. 
 Furthermore we make the straight line ΒΟ equal to the latus rectum of 
the eidos corresponding to ΚΒ, then the difference between sq.ΚΒ and sq.ΒΟ is 
equal to the sum of the double pl.ΒΟΚ and sq.ΟΚ. Therefore the difference be-
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tween sq.ΚΒ and sq.ΒΟ is greater than pl.ΒΚΟ and is smaller than the double 
pl.ΒΚΟ. But pl.ΒΚΟ is equal to the difference between sq.ΒΚ and the eidos  
corresponding to it, and the difference between sq.ΒΚ and the eidos corre-
sponding to it is equal to the difference between sq.ΑΓ and the eidos corre-
sponding ΑΓ, as is proved in Theorem 29 of this Book. 
 Therefore de difference between sq.ΒΚ and the square on the latus rec-
tum of the eidos corresponding to it is greater than the difference between 
sq.ΑΓ and the eidos corresponding to it, but is smaller than the double that dif-
ference. 
 

[Proposition] 50 
 
 If there is a hyperbola, and the transverse  side of the eidos correspond-
ing to its axis is smaller than its latus rectum, then the difference between the 
squares on two sides of the eidos corresponding to the axis is greater than the 
difference between the squares on two sides of any of the  eidoi corresponding 
to the diameters other than it,  and the difference between the squares on two 
sides of those eidoi corresponding to the diameters closer to the axis  is greater 
than the difference between the squares on two sides of those eidoi corre-
sponding to the diameters farther from it, and the difference between the 
square on any of those diameters and the square on the latus rectum of the ei-
dos corresponding to it is greater than the double difference between the 
square on the axis and the eidos corresponding to the axis 65.  
 Let the axis of the hyperbola be ΑΓ, and let each of the ratios ΓΝ to ΑΝ 
and ΑΞ to ΞΓ be equal to the ratio of ΑΓ to its latus rectum, and we make the 
rest of the diagram which preceded in the theorem before this remain the same. 
 Then the ratio pl.ΓΝ,ΑΞ to the difference between sq.ΑΝ and sq.ΑΞ is 
equal to the ratio of sq.ΑΓ to the difference between sq.ΑΓ and the square on 
the latus rectum of the eidos corresponding to it. And the ratio ΜΞ to ΑΞ is 
greater than the ratio ΜΝ to ΑΝ. Therefore the ratio ΜΞ  to ΑΞ is greater than 
the ratio of the sum ΜΞ and ΜΝ to the sum of ΑΞ and ΑΝ. Therefore the ratio 
pl.ΓΝ,ΜΞ to pl.ΓΝ,ΑΞ is greater than the ratio of the sum ΜΞ and ΜΝ to the 
sum of ΑΞ and ΑΝ. 
 But the ratio of the sum of ΜΞ and ΜΝ to the sum of ΑΞ and ΑΝ is equal 
to the ratio pl.ΞΝ, the sum of ΜΞ and ΜΝ to pl.ΞΝ, the sum of ΑΞ and ΑΝ. 
Therefore the ratio pl.ΓΝ,ΜΞ to pl.ΓΝ,ΑΞ is greater than the ratio pl.ΞΝ, the sum 
of ΜΞ and ΜΝ to pl.ΞΝ, the sum of ΑΞ and ΑΝ. 
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 Therefore it will proved thence by [a method] similar to that which we 
used above that the difference between sq.ΚΒ and the square on the latus rec-
tum of the eidos corresponding to it is smaller than the  difference between 
sq.ΑΓ and the square on the latus rectum of the eidos corresponding to it. 
 Then we make ΒΟ equal to the latus rectum of the eidos corresponding to 
ΚΒ. Therefore pl.ΒΚΟ is equal to the difference between sq.ΑΓ and the eidos 
corresponding to ΑΓ because of what was proved in Theorem 29 of this Book. 
 And the difference between sq.ΒΟ and sq.ΚΒ  equal to the sum of the 
double pl.ΒΚΟ and sq.ΚΟ, which is greater than  the double pl.ΟΚΒ. 
 Therefore the difference between the squares on two sides of the eidos 
corresponding to ΚΒ is greater than the double difference between sq.ΑΓ and 
the eidos corresponding to ΑΓ.       
      

[Proposition] 51 
 

 The difference between the squares on two sides  of the eidos corre-
sponding to the major axis of an ellipse is greater than the difference between 
the squares on two sides of any eidos corresponding to other diameters which 
are greater than the latus rectum of the eidoi corresponding to them, and the 
difference between the squares on two sides of those eidoi constructed to 
those of these diameters closer to the major axis is greater than the difference 
between the squares on two sides of those eidoi corresponding to those diame-
ters farther from it, and the difference between the squares on two sides of the 
eidos corresponding to its minor axis is greater than the difference between the 
squares on two sides of any eidos  corresponding to other diameters which are 
smaller than the latera recta of the eidoi corresponding to them, and the differ-
ence between the squares on two sides of those eidoi corresponding to those 
of these diameters closer to the minor axis is greater than the difference be-
tween the squares on two sides on those eidoi corresponding to the diameters 
farther from it. 
 Let there be the ellipse whose major axis ΑΓ and minor axis ΔΕ, and one 
of two equal conjugate diameters ΤΥ. Let two diameters ΒΚ and ΛΜ be drawn 
between Α and Τ, and let ΓΠ and ΓΡ [respectively] be parallel to them, and let 
there be dropped to the axis the perpendiculars ΠΧ and Ρι. 
 We construct in the diagram [elements] corresponding to the construc-
tions in the hyperbola in the theorem preceding this. 
 Then I sat that the amount by which sq.ΑΓ is greater than  the square on 
the latus rectum of the eidos corresponding to it is greater than the amount by 
which sq.ΚΒ is greater than  the latus rectum of the eidos corresponding to it, 
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and that the latter amount is greater than the amount by which sq.ΛΜ is 
greater than the square on the latus rectum of the eidos corresponding to it. 
 [Proof]. The ratio ΑΞ to ΞΧ is smaller than the ratio ΑΘ to ΘΧ. Therefore 
the ratio  pl.ΝΓ,ΑΞ to pl.ΝΓ,ΞΧ is smaller than the ratio the double pl.ΞΝ.ΑΘ to 
the double pl.ΞΝ,ΘΧ. 
 But as for the double pl.ΞΝ,ΑΘ , it is equal to the difference between 
sq.ΞΑ and sq.ΑΝ,  and as for the double pl.ΞΝ,ΘΧ , it is equal to the difference 
between sq.ΞΧ and sq.ΧΝ. Therefore the ratio pl.ΓΝ,ΑΞ to pl.ΓΝ,ΞΧ is smaller 
than the ratio the difference between sq.ΞΑ and sq.ΑΝ to the difference be-
tween sq.ΞΧ and sq.ΧΝ.  
 And permutando the ratio pl.ΓΝ,ΑΞ to the difference between sq.ΞΑ and 
sq.ΑΝ is smaller than pl.ΓΝ,ΞΧ to the difference between sq.ΞΧ and sq.ΧΝ . 
 But as for the ratio pl.ΓΝ,ΑΞ to the difference between sq.ΞΑ and sq.ΑΝ, 
it is equal to the ratio of sq.ΑΓ to the difference between it [sq.ΑΓ] and the 
square on the latus rectum of the eidos corresponding to it because each of the 
ratios ΓΝ to ΑΝ and ΑΞ to ΞΓ is equal to the ratio of ΑΓ to its latus rectum be-
cause both ΑΝ and ΞΓ are homologues. And as for the ratio pl.ΓΝ.ΞΧ to the dif-
ference between sq.ΞΧ and sq.ΧΝ, it is equal to the ratio of sq.ΑΓ to the differ-
ence between sq.ΒΚ and the square on the latus rectum on the eidos corre-
sponding to it, as is proved in Theorem 20 of this Book. Therefore the ratio of 
sq.ΑΓ to the difference between it and the square on the latus rectum of the 
eidos corresponding to it is smaller than  the ratio of sq.ΑΓ to the difference 
between sq.ΚΒ and the square on the latus rectum of the eidos corresponding 
to it therefore the difference between the squares on two sides of the eidos 
corresponding to ΑΓ is greater than the difference between the squares on two 
sides of the eidos corresponding to ΚΒ. 
 Furthermore we will prove, as we proved in the preceding part of this 
theorem, that the ratio pl.ΓΝ,ΞΧ to pl.ΓΝ,Ξι is smaller than the ratio the differ-
ence between sq.ΞΧ and sq.ΧΝ to the difference between sq.Ξι and sq.ιΝ.   
 And permutando the ratio pl.ΓΝ,ΞΧ to the difference between sq.ΞΧ and 
sq.ΧΝ is smaller than the ratio pl.ΓΝ,Ξι to the difference between sq.Ξι and  
sq.ιΝ . 
 And it will be proved thence that the difference between the squares on 
two sides of the eidos corresponding to ΒΚ is greater than the difference be-
tween the squares on two sides of the eidos corresponding to ΜΛ. 
 Furthermore we draw two diameters ΩΨ and ΦΣ between Α and Τ, and 
draw from Γ two straight lines ΓΗ and ΓΟ parallel to them, and drop to the axis 
perpendiculars Ης and ΟϘ, then I say that the difference between sq.ΔΕ and the 
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square on the latus  rectum of the eidos corresponding to it is greater than the 
difference between sq.ΩΨ and the square on the latus rectum of the eidos cor-
responding to it, and that this [latter] difference is greater than the difference 
between sq.ΦΣ and the square on the latus rectum of the eidos corresponding 
to it. 
 [Proof].  The ratio pl.ΓΝ,Ξς to pl.ΓΝ,Ξ Ϙ is greater than the ratio ςΘ to ΘϘ 
because Ξς is greater than ΞϘ and ςΘ is smaller than ϘΘ, and the ratio ςΘ to ϘΘ 
is equal to the ratio the double pl.ΞΝ,ςΘ to the double pl.ΞΝ, ϘΘ . 
 Now as for the double pl.ΞΝ,ςΘ , it is equal to the difference between 
sq.ΝΓ and sq.ςΞ, and as for the double pl.ΞΝ, ϘΘ , it is equal to the difference 
between sq.Ν Ϙ and sq. ϘΞ. Therefore the ratio pl.ΓΝ,Ξς to pl.ΓΝ,Ξ Ϙ is greater 
than the ratio the difference between sq.Νς and sq.ΧΞ to the difference be-
tween sq.Ν Ϙ and sq. ϘΞ .  
 And permutando the ratio pl.ΓΝ,ςΞ to the difference between sq.Νς and 
sq.ςΞ is greater than the ratio pl.ΓΝ, ϘΞ to the difference  between sq.Ν Ϙ and 
sq. ϘΞ. 
 Therefore it will be proved thence, by [a method] similar to that which we 
used above, that the ratio of sq.ΑΓ to the difference between sq.ΦΣ and the 
square on the latus rectum of the eidos corresponding to ΦΣ is greater than the 
ratio of sq.ΑΓ to the difference between sq.ΩΨ and the square on the latus rec-
tum of the eidos corresponding to it [ΩΨ]. Therefore the difference between 
sq. ΩΨ and the square on the latus rectum of the eidos corresponding to it is 
greater than the difference between sq.ΦΣ and the square on the latus rectum 
of the eidos corresponding to it. 
 Furthermore the ratio ϘΞ to ΦΓ is greater than the ratio ϘΘ to ΘΓ be-
cause ϘΞ is greater than ΞΓ and ϘΘ is smaller than ΘΓ, therefore the ratio 
pl.ΓΝ, ϘΞ to pl.ΝΓΞ is greater than the ratio the double pl.ΝΞ, ϘΘ to the double 
pl.ΝΞ,ΘΓ, and it will be proved thence, as we proved previously, that the differ-
ence between sq.ΔΕ and the square on the latus rectum of the eidos corre-
sponding to it is greater than the difference between sq.ΩΨ and the square on 
the latus rectum of the eidos corresponding to it. 


